
The Transfer of 

Cognitive Skill 
  

Mark K. Singley 

John R. Anderson 

Harvard University Press 
Cambridge, Massachusetts 
London, England 
1989 

OESTERLE LIBRARY, NCC 

NAPERVILLE, IL. 60566



Copyright © 1989 by the President and 
Fellows of Harvard College 

All rights reserved 
Printed in the United States of America 
1098 765 43 2 «1 

This book is printed on acid-free paper, and 
its binding materials have been chosen for 
strength and durability. 

Library of Congress Cataloging-in-Publication Data 

Singley, Mark K. 
The transfer of cognitive skill. 
(Cognitive science series: 9) 
Bibliography: p. 
Includes index. 
1. Transfer of training—Case studies. J. Anderson, 
John R. John Robert), 1947- . IL. Title. 
III. Series. 

LB1059.5523 1989 370.15 88-28404 
ISBN 0-674-90340-4 (alk. paper)



Cognitive Science Series, 9



MN 

Cognitive Science Series 

. Frank C. Keil, Semantic and Conceptual Development: An Ontological 
Perspective 

. Edwin Hutchins, Culture and Inference: A Trobriand Case Study 
William E. Cooper and Jeanne Paccia-Cooper, Syntax and Speech 

. Edward E. Smith and Douglas L. Medin, Categories and Concepts 

. John R. Anderson, The Architecture of Cognition 
. P. N. Johnson-Laird, Mental Models: Towards a Cognitive Science of 
Language, Inference, and Consciousness 

Steven Pinker, Language Learnability and Language Development 
Barbara Landau and Lila R. Gleitman, Language and Experience: Evi- 
dence from the Blind Child 

. Mark K. Singley and John R. Anderson, The Transfer of Cognitive Skill



To our wives, 

Arlene and Lynne, 

and our parents, 

Dorcas and Luther, and Adeline and John





Preface 

hen Singley first came to Carnegie-Mellon in 1982 to study 
with Anderson, the ACT* theory of skill acquisition was 

in its final stages of development and the time was ripe for 
application. What better domain than transfer to test a learning 
theory, we thought. By taking this approach, we were following 
a long tradition in which the question ‘What is learned?’ is 
answered by tests of transfer. We looked first at transfer in text 
editing and then at transfer in calculus. This book presents the 
results of that research as well as numerous other theoretical 
and empirical analyses that are relevant to transfer. 

As we began to reflect on our work, it became apparent that 
we were proposing something analogous to Thorndike’s iden- 
tical elements theory of the transfer process. In short, we as- 
sumed that transfer was based on those elements that are shared 
between tasks. In any identical elements theory, the critical 
question is how to define the elements. Using the ACT” theory 
as a starting point, we identified production rules as the ele- 
ments of skill and thus as the basis for transfer. We found 
production rules well cast in this role by virtue of certain useful 
properties, notably their independence and abstractness. The 
theory we present here can be viewed as a resurrection of 
Thorndike’s theory of identical elements, with production rules 
and their declarative precursors taking on the role of the ele- 

ments. 

With regard to Thorndike, it is possible to ask whether his 
theoretical glass is half full or half empty. In writing this book, 
we chose to stress the former (perhaps to get the reader’s blood



Vili Preface 

pumping), casting our theory as a modernization of his. We 
could just as easily have stressed the many differences between 
his theory and our own. In fact, our work represents something 
of a resolution to a conflict that has raged since Thorndike’s day 
concerning the specificity of transfer. Thorndike proposed an 
identical elements theory, but because of his lack of a mental 
representation language, his elements were superficial and tied 
to overt behavior. In short, Thorndike’s elements made no pro- 
vision for transfer at an abstract level. With production rules, 
however, transfer can be localized to specific components (in 
keeping with Thorndike’s theory) and yet still be quite abstract 
and mentalistic. 

We thank the many people who have shared in both the 
conceptual and the physical preparation of this book. Many of 
the ideas presented here had their first expression in meetings 
of the ACT* research group, which has included Frank Boyle, 
Gary Bradshaw, Fred Conrad, Al Corbett, Rob Farrell, Wayne 
Gray, Robin Jeffries, Bonnie John, Irv Katz, Claudius Kessler, 

Ken Koedinger, Matthew Lewis, Jean McKendree, Bob Milson, 

Peter Pirolli, Lynne Reder, Brian Reiser, Jeff Shrager, and Ross 
Thompson. Special thanks go to Claudius Kessler and Matthew 
Lewis, who participated significantly in the research effort and 
whose work is reported here in some detail. Peter Pirolli and 
Peter Polson read the entire manuscript and made many insight- 
ful suggestions regarding content and organization. Kelley 
George ably managed the physical preparation of the manu- 
script, including figures and tables. Mari-Jo Dagostino and Judy 
Rosa provided timely proofreading assistance. At Harvard Uni- 
versity Press, Michael Aronson encouraged our efforts and 
helped us define the direction and scope of the work; Virginia 
LaPlante provided a skillful polishing. Finally, we are grateful 
for the generous support we received for this work from the 
Army Research Institute and the Air Force Human Resources 
Laboratory, Contract MDA903-85-K-0343.



Contents 

1/ The Study of Transfer 1 

2/ Transfer in the ACT* Theory 42 

3/ Lateral Transfer 68 

4/ Negative Transfer 114 

5/ Use Specificity of Procedural Knowledge 138 

6/ Simulating Analogical Transfer 163 

7/ Declarative Transfer 197 

8/ The Theory in Review 222 

9/ Representation and Transfer 248 

References 277 

Index 293





The Transfer of Cognitive Skill





1 / The Study of Transfer 

he aim of this book is to apply some of the modern formal- 
isms of cognitive psychology to an age-old practical prob- 

lem: the transfer of learning. The study of transfer is the study 

of how knowledge . ed ©. situ. _applie fai 
apply) in other situations. There is a . host of theoretical and 
practical reasons for reviving interest in transfer now. Transfer 
provides an important test-bed for learning and performance 
theories. Newell and Simon (1972) pointed out that a certain 

research agenda is imposed on cognitive psychologists by logi- 
cal necessity. A performance theory is first worked out in detail. 
Only then can issues of learning be addressed. The underlying 
logic is that one must understand the end points of a transition 
before understanding the transition itself. 

In a sense, the study of transfer is the next logical step in the 
research program outlined by Newell and Simon. To under- 
stand transfer, one must have detailed theories of both learning 
and p performance. In addition, these theories must apply to not 
one skill but twa t two. Although transfer is a complex, higher-order 
phenomenon, ‘there is currently no reason to suspect that its 

understanding will lie outside the bounds of a well-specified 
theory of learning and performance. In short, the study of trans- 
fer is a stringent but necessary test for all comprehensive th 
ries of cognition. 

Aside from its relevance to theoretical issues, the problem of 

transfer is perhaps the fundamental educational question. It is 
rare that people learn things in school which apply directly to 
life and work. For education to be effective, curricula must be 

         



2 The Transfer of Cognitive Skill 

designed with an eye toward transfer. This concern becomes 

increasingly important in a world where rapid technological 

change often penalizes those who are narrowly skilled and in- 

flexible. Interacting with educational questions are questions of 

technological design. It has been claimed that, in comparison 

with simpler machines like automobiles and copiers, transfer 

among different kinds of computer systems is relatively difficult 

(Nakatani, 1983). Perhaps transfer should be considered more 

explicitly in the design process. 
A recurring observation in the study of transfer is that knowl- 

edge acquired in one situation fails to transfer to another, and a 

major theoretical issue concerns why this is so. Our perspective 

on this issue is that such failures are an inevitable consequence 
of the limited power and generality of human knowledge. Just 
having knowledge that logically implies a solution to a task is 

not enough. One must learn how to apply that knowledge to the 

task in specific situations. This leads to our interest in cognitive 

skill, which may be characterized as the application of knowl- 

edge to a task. Most of this book is devoted to assessing the 

adequacy of the ACT* (pronounced “‘act-star’’) theory (Ander- 

son, 1983) in providing an analysis of the transfer of cognitive 

skill. However, it is first necessary to frame the issue of transfer 

historically. 

Transfer in Historical Perspective 

Issues of transfer have fallen in and out of the main focus of 

psychology at several times in the past. Each school has had its 

own interests and approaches. Throughout its history, how- 

ever, the study of transfer has been dominated by certain recur- 

ring themes, both substantive and methodological. 

General versus specific transfer 

Perhaps the dominant substantive issue in transfer research has 

been whether transfer is specific and limited in scope or whether 

it is broad and ranges across diverse tasks and disciplines. The 

first psychologist to study transfer systematically was the asso- 

ciationist Thorndike (Thorndike and Woodworth, 1901), and he 

took primary interest in this issue. Thorndike disagreed with the 

prevailing opinion concerning education during his time, 

namely the doctrine of formal discipline. This doctrine, credited 

to Locke (Higginson, 1931) and upheld by a number of early 

educational psychologists (Angell, 1908; Pillsbury, 1908; Wood-



The Study of Transfer 3 

row, 1927), claimed that studying such otherworldly subjects as 
Latin and geometry was of significant value because it served to 
discipline the mind. The doctrine of formal discipline subscribed 
to the faculty view of mind, which extends back to Aristotle and 
was first formalized by Reid in the late eighteenth century 
(Boring, 1950). The faculty position held that the mind was 
composed of a collection of general faculties, such as observa- 
tion, attention, discrimination, and reasoning, which were ex- 
ercised in much the same way as a set of muscles. The content 
of the exercise made little difference; most important was the 
level of exertion (hence the fondness for Latin and geometry). 
Transfer in such a view is broad and takes place at a general 
level, sometimes spanning domains that share no content. For 
example, training in chess should transfer to computer pro- 
gramming since both skills involve use of the general reasoning 
faculty. 

Thorndike undertook a research program extending some 
thirty years to show that transfer was much narrower in scope 
than would be predicted by the doctrine of formal discipline. 
According to Thorndike, the mind was composed not of general 
faculties but rather of specific habits and_associations, which 
provided a person with a variety of narrow responses to very 
specific stimuli. In fact, the mind was just a convenient name for 
countless special operations or functions (Stratton, 1922). 
Thorndike’s theory of transfer, known as the theory of identical 
elements, stated that training in one kind of activity would 
transfer to another only if the activities shared common 
stimulus-response elements: (One mental function or activity 
improves others insofar as and because they are in part identical 
with it, because it contains elements common to them) Addition 
improves multiplication because multiplication is largely addi- 
tion; knowledge of Latin gives increased ability to learn French 
because many of the facts learned in the one case are needed in 
the other’ (Thorndike, 1906, p. 243). Thus, Thorndike was 
happy to accept transfer between diverse skills as long as it 
could be shown that the transfer was mediated by identical 
elements. Generally, however, Thorndike concluded that ‘‘the 
mind is so specialized into a multitude of independent capacities 
that we alter human nature only in small spots, and any special 
school training has a much narrower influence upon the mind as 
a whole than has commonly been supposed” (Thorndike, 1906, 
p. 246). 

In his first series of experiments (Thorndike and Woodworth, 
1901), Thorndike subjected the strong version of the doctrine of 

  

    

  

   

      

   

  

  

  



4 The Transfer of Cognitive Skill 

formal discipline to an empirical test. The strong version claims 
that transfer ranges across diverse tasks when those tasks in- 
volve the same general faculty. In one study, no correlation was 
found between memory for words and memory for numbers. In 
another, accuracy in spelling was not correlated with accuracy in 
arithmetic. Thorndike interpreted these results as evidence 
against the general faculties of memory and accuracy. 

However, Thorndike was not content with attacking only the 

strong version of the theory. To further substantiate his own 
theory of identical elements, he devised a much more stringent 
test which involved presenting subjects with tasks more closely 
related, tasks he defined as falling within the same function 
group. A function group was defined as a particular operation 
generalized across a limited set of inputs. For example, the 
addition of the integers constituted a single function group. 
Thorndike’s position was that transfer was quite limited even 
within function groups, and that any change in the inputs would 
have a detrimental effect on the function: ‘“Any disturbance 
whatsoever in the concrete particulars reasoned about will in- 
terfere somewhat with the reasoning, making it less correct, or 
slower, or both” (Thorndike, 1922, p. 36). 

To test this position, Thorndike gave a group of subjects 
skilled in algebra a series of algebraic exercises involving either 
customary or novel algebraic expressions (Thorndike, 1922). Ta- 
ble 1.1 presents the exercises as well as the results of the exper- 
iment. In most cases, changing the form of the data did have a 
detrimental effect on performance. However, in one of the six 
exercises, performance was not damaged, and overall, subjects 
supplied right answers to about 50 percent of the novel exer- 
cises. These results offer little support for the strong version of 
Thorndike’s theory of identical elements. They in fact provide 

Table 1.1. Representative results from Thorndike’s (1922) experiment 
on the effect of changed data on reasoning. 
  

  

Percent Percent 
Problem Customary incorrect Novel incorrect 

Square x+y 6 b, + b, 28 

Square a°x? 34 rr 47 
Factor ry 22 1/x? — 1/y? 4] 
Multiply x“ and x” 55 4° and 4” 70 
Simplify ac — [a(b + c)] 25 Pips — [pPilPo — Ps)] 53 

Solve e + ef = 8/x; x 52 e* + ef = 8/p; p 53 
 



The Study of Transfer 5 

evidence for substantial positive transfer within algebraic func- 
tion groups. 

In another experiment (Thorndike and Woodworth, 1901), 
Thorndike trained subjects to cross out the words in a prose 
passage containing both the letters e and s (e-s). Following this 
training, subjects did better on transfer tasks that involved 
crossing out words that contained either e-r or s—p than words 
that contained two new letters. Thorndike interpreted these 
results as consistent with his common elements view. However, 
those subjects who had e-s training did better on words with 
two new letters than did control subjects who had no training 

whatsoever. Once again, there was evidence for a kind of gen- 
eral skill transfer within a function group. Generally, Thorndike 
observed more transfer than could be explained by common 
stimulus-response elements alone. 

Besides this lack of empirical support, Thorndike was criti- 
cized from a purely logical standpoint by educational psychol- 
ogists more sympathetic to the doctrine of formal discipline 
(Meiklejohn, 1908; Wallin, 1910; Orata, 1928). One of the pri- 
mary objections was that Thorndike’s mechanistic stimulus- 
response conception of mind was incompatible with the 
traditional notion of transfer which stressed adaptation and flex- 
ibility. In many transfer situations, what one already knows is 
somehow insufficient; some kind of transformation or adapta- 

tion of existing knowledge is required. However, Thorndike’s 
view precluded any kind of intelligent adaptation or reconstruc- 
tion: “In the same organism the same neurone action will al- 
ways produce the same result, in the same individual the really 
same situation will always produce the same response” 
(Thorndike, 1903, p. 7). Given concrete stimulus-response pairs 
as the elements of skill, Thorndike’s theory of identical elements 
was in a sense denying the existence of transfer entirely, in that 
transfer was possible only in those situations where the same 
responses to the same stimuli were required. In effect one was 
simply doing more of the same, as opposed to something adap- 
tive and new. 

Another problem was that, in the absence of an explicit rep- 
resentation language for cognitive skill, Thorndike was some- 
what vague about the exact nature of his elements. In fact, there 
has been considerable debate on this point, much of it focusing 
on the meaning of the troublesome term identical (Orata, 1928; 
Ellis, 1965). Given a literal interpretation, an identical elements 

theory makes the prospect of learning and transfer rather ab- 
surd and quixotic: ‘What can we say of a theory that the training



6 The Transfer of Cognitive Skill 

of the mind is so specific that each particular act gives facility 
only for the performing again of that same act just as it was 
before? Think of learning to drive a nail with a yellow hammer, 
and then realize your helplessness if, in time of need, you 
should borrow your neighbor’s hammer and find it painted red. 
Nay, further think of learning to use a hammer at all if at each 
other stroke the nail has gone further into the wood, and the 
sun has gone lower in the sky, and the temperature of the body 
has risen from the exercise, and in fact, everything on earth and 
under the earth has changed so far as to give each new stroke a 
new particularity all of its own, and thus has cut it off from all 
possibility of influence upon or influence from its fellows’ 
(Meiklejohn, 1908, p. 126). 

The problem, of course, is that no two situations are truly 
identical; they are merely perceived as such psychologically. 
Predating the cognitive revolution, Thorndike’s theory was tied 
to the physical world and made no use of abstract mental rep- 
resentations. Quite simply, Thorndike did not have the formal 
and theoretical tools to develop his ideas properly. Thorndike 
was successful in toppling a mistaken theory, the doctrine of 
formal discipline. In its place he put one that was largely vacu- 
ous. Despite these criticisms, Thorndike defined most of the 
issues that dominate discussions of transfer to the present day. 

Theories that smack more or less of formal discipline have 
been circulated with regularity over the years. Perhaps the most 
influential and long-standing has been Piaget’s theory of cogni- 
tive development. It is difficult to overestimate the impact of 
Piaget’s theory, not only in developmental psychology but also 
in such diverse fields as biology and philosophy. Although the 
theory is wide-ranging and complex, we may restrict ourselves 
to those claims of the theory concerning the abstract nature of 
knowledge and its relation to stages of development. According 
to Piaget, children pass through an invariant sequence of fairly 
stable stages on their way to cognitive maturity. These stages 
are defined by certain modes of thought, which have been given 
an abstract yet precise mathematical characterization in the the- 
ory. Critical to a stage theory like Piaget’s are the claims that the 
onset of a particular stage is rapid, not continuous, and that, 
once a child is within a stage, all reasoning is mediated by the 
characteristic structures of that stage. If, for example, a child is 
in the concrete operations stage, that child should exhibit con- 
crete operations on a wide range of tasks. Thus, Piaget’s posi- 
tion was that knowledge is quite abstract and that particular 
knowledge structures apply broadly (speaking of Piaget’s theory



The Study of Transfer 7 

in terms of knowledge applying to tasks is somewhat mislead- 
ing in that the theory is a structural and not a process theory). 
On these grounds, a loose parallel may be drawn between the 
Piagetian view and the doctrine of formal discipline. Both iden- 
tify a commonality between tasks at a very high level. One 
major difference between the two, however, is that Piaget felt 
strongly that abstract thinking cannot be taught or trained, and 
that children cannot be pushed through the developmental se- 
quence. 

Piaget used a wide range of problem-solving tasks to study 
the developmental sequence, many of which have subsequently 
become staples for research in developmental psychology. Al- 
though Piaget himself used these tasks primarily for exploratory 
purposes, subsequent researchers have used them more or less 
as litmus tests to classify children into their respective stages. 
For example, the concrete operations stage is identified through 
successful performance on such tasks as conservation (number, 

liquid, solid, and weight), class inclusion, and seriation. Years 
of replication of Piaget’s work, however, has shown that prog- 
ress through the developmental stages is not as orderly and 
well-defined as Piaget originally thought. Most important, re- 
cent research has shown that children do not necessarily per- 
form equally well on all tasks that define a particular stage, and 
this suggests that knowledge is not totally abstract but is some- 
what specific to the task at hand. 

The experimental evidence is perhaps clearest for those tasks 
defining the concrete operations stage, which roughly spans the 
ages 7 through 12. Consider three of Piaget’s benchmark tasks: 
conservation of number, conservation of solid, and conservation 
of weight. According to the theory, performance on these tasks 
should be completely coupled; children should show mastery of 
either all or none simultaneously (Seigler, 1986). In fact, children 

seem to acquire these concepts in sequential order, with conser- 
vation of number appearing first at age 6, conservation of solid 
next at age 8, and conservation of weight last at age 10 (Katz and 
Beilin, 1976; Miller, 1976); Piaget termed this decoupling hori- 
zontal decalage but had no explanation for it. Additionally, 
it has been shown that, within a single task, children may do 
well on some versions and not on others. For example, in the 

conservation-of-number task, children may conserve sets of 
three objects but not sets of five (Kinsbourne, 1978). Similarly, in 

the class inclusion task, performance varies widely depending 
upon superficial features, such as wording and problem context 
(Winer, 1980). For example, questions involving the classifica-



8 The Transfer of Cognitive Skill 

tion of animals are much easier than those involving the classi- 
fication of flowers (Inhelder and Piaget, 1964). 

Thus, it appears that the role of domain-independent, abstract 
knowledge has been somewhat overstated in the Piagetian the- 
ory. This realization has led certain developmental theorists 
(e.g., Flavell, 1978) to call for the abandonment of sweeping 
stage theories like Piaget’s which attempt to characterize all of a 
child’s thinking at a certain age by a single deep structure. 
Indeed, with the advent of the information-processing ap- 
proach, the focus in developmental psychology has largely 
shifted away from stage theories and toward the study of incre- 
mental development within specific content domains. 

Meaningful versus rote learning 

The traditional doctrine of formal discipline and Thorndike’s 
theory of identical elements in essence define the two extreme 
ends of the general-specific transfer continuum. Certainly many 
intermediate positions are possible. Indeed, many early critics of 
the theory of identical elements claimed that Thorndike had 
shown not that transfer was necessarily limited in scope, but 
merely that in the absence of effective training it was (Meredith, 
1927; Woodrow, 1927; Orata, 1928). Several studies done in 

direct opposition to Thorndike showed that the likelihood and 
breadth of transfer was largely dependent on the type of instruc- 
tion offered and the subsequent organization of the skill (Judd, 

1908; Ruger, 1910; Coxe, 1925; Orata, 1928; Dorsey and Hop- 
kins, 1930). The question of whether there is transfer between 

tasks often has no dogmatic answer; transfer often depends on 
whether a common representation of the tasks can be found and 
communicated to subjects. 

Perhaps the first demonstration of the importance of repre- 
sentation was the classic refraction study by Judd (1908). In this 
experiment, young boys were asked to throw darts at an under- 
water target. During training, the target was submerged twelve 
inches, but in the transfer task, it was brought up to four. The 
critical manipulation was that half of the subjects received in- 
struction on the theory of refraction, and the other half did not. 

Interestingly, the two groups were indistinguishable during 
training, when both groups were occupied primarily with the 
mechanics of dart throwing. However, the difference between 
the two groups emerged strikingly on the transfer task. Those 
subjects without theory were quite confused, and their errors 
were large and persistent. However, those subjects with instruc-



The Study of Transfer 9 

tion adapted very rapidly. Apparently, an understanding of the 
basics of refraction helped them to generate the appropriate 
action in the new situation. 

Results such as these supported the position that transfer was 
largely dependent on the kind of representation subjects had of 
the task. However, to associationists like Thorndike, represen- 

tation was not an issue. Thorndike claimed that all learning 
could be reduced to a single type: the forming and strengthen- 
ing of connections between stimuli and responses. In such a 
view, the difference between learning a simple association be- 
tween two nonsense syllables and learning a complex mathe- 
matical postulate was entirely quantitative; the latter simply 
involved forming more associations. 

In contrast, gestalt psychologists like Wertheimer, Koffka, and 
Katona made a qualitative distinction between what.they called 
senseless learning, the kind studied by the associationists, and 
meaningful learning, the kind where “eyes are opened .. . real 
grasping, real understanding occurs” (Wertheimer, in Katona, 

1940). Meaningful learning arises not from the formation of 
connections through rote memorization but rather from a deep 
understanding of the structural relations within a problem. To 
draw this distinction experimentally, the gestalters were natu- 
rally drawn to the study of transfer. Their_claim_was_that, 
whereas senseless learning would shaw little or no_transfer, 
meaningful learning would show quite a bit. To the gestalters, 
transfer occurred not through the piecemeal sharing of common 

elements but rather through the transposition of an entire struc- 
ture. Where Thorndike erred was in his insistence that “the 
essential element in the structure of psychology is habit and no 
organization at a higher level exists” (Allport, 1937, p. 248). 

A clear illustration of the difference between Thorndike’s 
identical elements and the gestalt notion of transposition is the 
comparison of two different musical melodies. Thorndike’s mea- 
sure of similarity presumably would be based upon the number 
of shared notes in the two melodies. However, the gestalters 
recognized that melodies are perceived as organized wholes 
whose essential character resides in the functional relations be- 
tween the notes, not in the notes themselves. Such an analysis 

captures the fact that, although two melodies may share no 
notes, they nevertheless may be perceived as virtually identical, 
as in the case when a melody is played in different keys (Wert- 
heimer, 1945). The gestalters’ principal insight was simply that 
the whole is often more than the sum of its parts. 

Subjects, then, can approach a task in more than one way, 

    

  

 



10 The Transfer of Cognitive Skill 

and the method of attack can have profound implications for 
transfer. Wertheimer (1945) found that, given the same task, 
subjects adopt different strategies, some more “meaningful’’ 
than others. Figure 1.1a shows the classic demonstration of this 
fact, namely Wertheimer’s task of finding the area of a parallel- 
ogram. His young subjects were shown the procedure for drop- 
ping perpendiculars to convert a parallelogram to a rectangle, a 
shape for which a tried and true formula for computing area was 
already known. However, only some of his subjects grasped the 

/ [ 
  

(a) initial orientation and method 

  

(b) new orientation and rote method 

(c) sensible (top) and inse isible transfer tasks 

Figure 1.1. Wertheimer’s finding the area of a parallelogram. M. Wertheimer, Produc- 

tive Thinking (New York: Harper & Row, 1943, © 1959 by Valentin Wertheimer). 
Reprinted by permission.



The Study of Transfer 11 

sense of this transformation; others adopted a rote strategy of 
dropping lines and measuring line segments. On the original 
task, the rote and meaningful strategies were more or less func- 
tionally equivalent, as in Judd’s refraction study. However, the 
two strategies were easily discriminated by a series of transfer 
tasks. Figure 1.1b shows one task in which subjects were pre- 
sented with a parallelogram in a different orientation. Some 
subjects continued to drop vertical lines, as was required by the 
original task, but was now inappropriate. Figure 1.1c shows 
another transfer task, in which subjects were presented with a 
series of irregular figures, some of which nonetheless could be 
transformed in much the same way as the parallelogram. Sub- 
jects with the proper understanding of the transformation 
solved the “‘sensible” figures readily and rejected the others as 
malformed. These demonstrations show that transfer results are 
often useful in determining what has been learned in those 
situations where more than one type of learning is possible. 

Whereas Wertheimer relied on the natural variability in the 
methods of his subjects, Katona (1940) set out to induce different 

strategies and representations experimentally. Katona _per- 
formed a series of experiments involving a variety of puzzle 
problems (card tricks, matchstick problems) where subjects were 
taught either a rote strategy that applied to a particular problem 
Or a more general strategy that was based on the structural 
relations of an entire set of problems. Figure 1.2 shows the 
matchstick problem, where subjects either memorized the series 
of physical actions used to solve a particular problem or studied 
the following more meaningful principle: ‘‘Here are five squares 

  

W
-
-
—
-
—
—
—
d
 

  

            
Figure 1.2. Katona’s matchstick problem.



12 The Transfer of Cognitive Skill 

composed of sixteen equal lines. We want to change these five 
Squares into four similar squares. Since we have sixteen lines 
and want four squares, each square must have four indepen- 
dent side lines, which should not be side lines of any other 

square at the same time. Therefore, all lines with a double func- 
tion, that is, limiting two squares at the same time, must be 

changed into lines with a single function (limiting one square 
only)’ (Katona, 1940, p. 60). The standard result in these exper- 

iments was that, whereas the rote subjects had slightly better 
performance on the problem they had memorized, the mean- 
ingful subjects showed much better transfer to similar problems. 
This finding was replicated by Hilgard, Irvine, and Whipple 
(1953) and, more recently, by Simon (1975), who showed that a 

general recursive strategy for solving the tower-of-Hanoi prob- 
lem applied to problems with any number of disks, whereas a 
rote strategy did not. 

Thus, when considering issues of transfer, we must consider 
the strategies and representations used by subjects. Some may be 
more conducive to transfer than others. It is interesting to note, 
however, that throughout their attack on Thorndike and the 

associationists, the gestalters did not deny the basic notion of 
identical elements and its relevance to transfer; they merely 
stressed the preeminence of structural identity over the kind of 
piecemeal identity that Thorndike advocated (Wertheimer, 1945). 

Analytic versus nonanalytic approaches 

Most of the early studies of transfer did little to determine the 
actual locus of the effect, that is, which pieces of knowledge 
were being carried over to the new situation. In many classroom 
studies it was sufficient simply to demonstrate that transfer had 
occurred at all (Ellis, 1965). Underwood (1957) called such ex- 
periments nonanalytic, for obvious reasons. Nonanalytic experi- 
ments abounded for at least two reasons. First of all, researchers 
had no knowledge representation language to specify the ele- 
ments of skill. As a result, as Thorndike (1903) admitted, “it was 

often not possible to tell just what features of two mental abil- 
ities were thus identical’’ (Thorndike goes on to say, however, 
that ‘there is rarely much trouble in reaching an appropriate 
decision in those cases where training is of practical impor- 
tance’). Second, even if the elements could have been specified 
explicitly, data collection techniques were often incapable of 
winnowing out the effects of a particular learned component on 
the execution of a complex skill.



The Study of Transfer 13 

Although the identification and independent measurement of 
elements was and continues to be a difficult problem, it can be 

made somewhat easier by the choice of an appropriate task, 
particularly one that is relatively simple, discrete, and therefore 
easily structured. The verbal learners adopted just such a task 
for extensive study: the learning of lists of paired associates. The 
verbal learners took the problem of transfer out of the classroom 
and placed it firmly in the laboratory, where it was subjected to 
a thorough analysis. Much was learned about the peculiarities of 
transfer as it manifests itself in this relatively narrow and cir- 
cumscribed domain. 

In the typical study, subjects were asked to learn in succession 
two lists of paired stimuli and responses, most often familiar 
words or nonsense syllables. The two lists often differed in 
terms of stimulus or response similarity. For example, the stim- 
uli in the two lists might be synonyms, or the responses ant- 
onyms. In such a way, the relative contributions of stimulus and 
response similarity could be assessed independently. The struc- 
ture of this task was clean and lent itself to a relatively straight- 
forward analysis. 

A wide range of transfer results from such studies were 
systematically integrated by Osgood (1949) with his transfer 
and retroaction surface. Figure 1.3 shows Osgood’s three- 
dimensional surface, which conveys that transfer is a curvilinear 

+ 

  

  
Figure 1.3. Osgood's transfer surface (the stimulus dimension, in the foreground, ranges 
from S, [identical stimuli] to Sy, [neutral stimuli]; the response dimension, along the back 
edge, ranges from R, [identical responses] to R, [antagonistic responses]).



14 The Transfer of Cognitive Skill 

function of both stimulus and response similarity. The side edge 
shows shifts in stimulus similarity, ranging from identical stim- 
uli (S,) in the two lists, through similar stimuli (S,), to neutral 
stimuli (S,)). The back edge shows shifts in response similarity, 
ranging from identical responses (Rj), through similar responses 
(Rg), neutral responses (Ry), and partially opposite responses 
(Ro), to directly antagonistic responses (Ra). The vertical dimen- 
sion expresses the amount of transfer, ranging from largely 
positive (+) to largely negative (—). The surface is perhaps best 
understood by considering its extreme anchors: 

1. In the back left corner, maximal transfer occurs when both 
stimuli and responses are identical in the two lists (this is in 
some sense a degenerate transfer condition and is really a case 
of overlearning). Transfer diminishes but remains positive as 
both stimuli and responses depart from identity and approach 

similarity. 
2. In the front left corner, maximal interference occurs when 

the stimuli are identical in the two lists but the responses are 
antagonistic. Once again, interference diminishes as both stim- 
uli and responses approach similarity. 

3. Along the back edge, where the stimuli in the two lists bear 
no resemblance whatsoever, the amount of transfer is zero and 
is unaffected by shifts in response similarity. 

Although Osgood’s surface represents a fairly accurate sum- 
mary of verbal learning transfer results, various aspects have 
been called into question. The criticisms concern both the cor- 
rect placement of certain regions of the surface and the compre- 
hensiveness of the surface as a whole. For example, although 
several points along the stimulus similarity dimension have been 
sampled, the continuous gradients implied by the smooth 
curves have never truly been substantiated, especially in the 
intermediate regions of the curves (Postman, 1971). Concerning 
comprehensiveness, Bower and Hilgard (1981) pointed out that 
the surface does not accommodate a particular design in which 
the stimuli and responses in the second list are identical to those 
in the first but are simply repaired (the so-called A-B, A-Br 
design). Various studies (Gagné, Baker, and Foster, 1950; Porter 

and Duncan, 1953) have shown that this condition produces the 
most negative transfer, but it is not represented anywhere on 
the surface. To remedy some of these deficits, Martin (1965) 

proposed an even more elaborate decomposition involving sep- 
arate surfaces for forward associations, backward associations, 
and response availability. The particulars of these various for-



The Study of Transfer 15 

mulations are of no real concern here. What is most important is 

that the verbal learners pioneered a highly analytic approach to 
the study of transfer. 

An interesting question is whether the recall of a list of paired 
associates constitutes cognitive skill. On the one hand, the task 
has a rather shallow, disjointed organization and seems to in- 
volve no cognition other than retrieval from long-term memory. 
On the other hand, there does seem to be a certain skill in- 

volved: with practice, subjects actually get better at learning 
new lists. More specifically, there is a well-documented general 
practice effect distinct from the specific effects summarized in 
Osgood’s surface. This general practice phenomenon, called 
learning to learn, has been found in domains ranging from paired 
associates learning (Ward, 1937; Bunch and McCraven, 1938; 

Thune, 1950) to maze learning in rats (Marx, 1944) to concept 
learning in monkeys (Harlow, 1949). Ironically, this general 
practice effect was viewed largely as a contaminating factor and 
consequently was not studied as exhaustively as the specific 
effects. 

Lateral versus vertical transfer 

While the verbal learners were taking the study of transfer out of 
the classroom and into the laboratory, a group of educational 
psychologists, led by Gagné, were striving for a similar level of 
analysis with more complex classroom tasks. Their interest was 
in designing well-formed curricula that maximized learning and 
transfer and could be used in conjunction with the new “‘pro- 
grammed instruction” technology. Programmed instruction, 
which arose out of the behaviorist tradition (Skinner, 1954), 
decomposed the teaching of a complex topic such as algebra into 
a set of discrete subtopics or frames. The approach stressed the 
role of feedback and cumulative learning; that is, each frame 
was mastered before moving on to the next. To be principled, 
programmed instruction required that the developer first iden- 
tify the elements of skill or frames to be sequenced and then 
apply some sequencing strategy. All too often, however, this 
ideal was not realized (Gavurin and Donahue, 1961; Roe, Case, 

and Roe, 1962; Buckland, 1968). Many programs of instruction 
were largely ad hoc (VanPatten, Chao, and Reigeluth, 1986). 

Gagné and his colleagues set out to put curriculum design on 
firmer footing. After observing that learning rates in pro- 
grammed instruction varied by as much as a factor of two, 
Gagné argued that individual differences were due not to dif-



16 The Transfer of Cognitive Skill 

ferences in intelligence but rather to differences in prerequisite 
knowledge (Gagné and Paradise, 1961). Cognitive skill was best 
represented as a hierarchy of super and subordinate capabilities 
called learning sets (Harlow, 1949). The successful acquisition of 

a particular learning set in the hierarchy was almost completely 
dependent on the mastery of sets subordinate to it. At the top of 
these skill hierarchies sat the highest-order skill, the goal of the 
instructional sequence. At the bottom sat basic abilities of the 
type that might be measured by standardized intelligence tests. 

Gagné’s skill hierarchies brought to light the distinction be- 
tween what he called lateral and vertical transfer (Gagné, 1966). 
Lateral transfer was defined as the kind of transfer that 
spreads over a broad set of situations at roughly the same 
level of complexity. For example, transfer between different 
programming languages, between different puzzle problems 

like tower-of-Hanoi and missionaries-and-cannibals, or be- 

tween speaking English and French all qualify as instances of 
lateral transfer. Vertical transfer, however, concerns transfer 
between lower-level and higher-level skills that exist in a part- 
whole, prerequisite relationship to one another. In a sense, 
Gagné’s skill hierarchies defined the conditions for vertical 
transfer within a particular skill: vertical transfer was nearly 
guaranteed when subordinate learning sets in the hierarchy 
had been mastered. 

Figure 1.4 presents Gagné’s skill hierarchy for solving first- 
order algebraic equations. The hierarchy consists of seven dis- 
tinct subordinate levels, arranged in order of complexity and 
terminating with the basic skills of integration, symbol recogni- 
tion, and knowledge of number. Arcs between various nodes in 
the tree indicate specific prerequisite relations. 

Hierarchies such as these were said to be constructed largely 
through a process of rational task analysis, the details of which 
were generally unspecified. As Gagné put it, to identify the 
prerequisites of a particular learning set, one simply asks the 
following question: “What would the student have to know 
how to do in order to achieve this new task, when given only 
instructions” (Gagné and Paradise, 1961, p. 4). One asks this 
question recursively at all levels until the entire hierarchy has 
been defined. The recursion stops at the level of so-called basic 
skills, which may be more or less basic, depending on the com- 
plexity of the root node of the hierarchy. 

This was how the elements of skill were defined. As for how 
they were sequenced in the curriculum, Gagné reported that 
there were many equally good alternate routes through most



      

    

   
   

  

  

  

   

  

   

Identifying 
needed 
operations in 
order    

  
Procedural 
order 

The Study of Transfer 17 

   
Solving Equations 

  

  

   

   
   
   
   

  

tracting terms to 
both sides 

     

Simplifying an 
   

  

Supplying sum 

           
      

      

  plifying an 
Simplifying an equation by Simplifying an 
equation by multiplying, equation by 
adding and sub- dividing, sub- multiplying and 

tracting, and 
adding numbers 

6 bo . age 

    

   
   

  

   
    
   

  

    
    

    

dividing both 
sides by terms 

Z™ 
Simplifying an Supplying pro- 

   

  

  

     
  

    

      

      

       
       

     
    

       

  

    

  

    
Performing 

  

     

        

   

  

Recognition of addition and 
equivalent terms subtraction of 

numbers in 
sequence 

\ 
  

   
   

   

  

Equivalence of 
1x and x 

    

   
      

       

Identification 
of an equation 

  

  

  

equation by equation by duct and 
equivalents “io adding and sub- multiplying. and quotient 
sums and differ- tracting dividing both equivalents to 
ences (terms) numbers to sides by products and 

both sides numbers quotients (terms) | 

Supplying sum Supplying pro- 
Addition and and difference duct and P 
subtraction of equivalents to quotient 
terms in sums and equivalents to 
sequence differences products and 

(numbers) ~T 

Combining frac- aa 
tions with like fractional 
denominators expressions 

    

   

    

  

Recognizing 
equivalence of. 

Performing 
multiplication 
of numbers in 
sequence 

    

    

Division of 
multiplication 
and division 
terms 

      

Obtaining 
products with 
zero 

  

    Integration Symbol 
recognition 

  

  

    

  

Figure 1.4. Gagné’s skill hierarchy for solving simple equations.



18 The Transfer of Cognitive Skill 

hierarchies. The one inviolable rule was that, as one moved 
from lower to higher levels, one did not move to a superordinate 
node without mastering all the prerequisites. In Gagne’s view, 
many educational problems arise from violations of this rule: 
“Of course, the individual learner may be set a problem which 
is beyond him in the sense that he must acquire all the subor- 
dinate principles himself before he achieves a solution. Solving 
a problem under such circumstances may happen on certain 
occasions and in particular individuals, but to advocate such an 
approach as a practical learning method makes no sense” 
(Gagné, 1966, p. 165). In fact, Resnick (1976) showed that when 
nodes are skipped in the hierarchy, that is, when students are 
given tasks beyond their skill level, the variability among stu- 
dents increases. The better students are able to span the gap; the 

worse students are not. 
Gagné’s skill hierarchies have been subjected to several em- 

pirical tests (Gagné and Paradise, 1961; Gagné and Bassler, 1963; 
Gagné and Staff, 1965). For example, Gagné and Paradise (1961) 
set out to validate the skill hierarchy shown in Figure 1.4. Their 
method was to present students with programmed instruction 

based on the hierarchy and to monitor the various transitions 
between levels. Transitions were classified into four types, based 

on the subjects’ performance on adjacent levels in the hierarchy: 

1. LOWER+ HIGHER+ This denotes the situation 
where a subject masters both the subordinate and the superor- 
dinate skills. This situation is consistent with Gagné’s theory: if 
subjects master all lower-level skills, transfer should be total and 

positive to the higher-level skills. 
2. LOWER— HIGHER-— This situation, also consistent 

with the theory, occurs when subjects fail on lower-level skills 
and subsequently fail on higher-level skills. 

3. LOWER— HIGHER+ This situation is in direct con- 
tradiction to the theory. It is unclear whether a high occurrence 
of such transitions indicates a disconfirmation of the theory or 
simply a poor task analysis. 

4. LOWER+ HIGHER- Gagné hedged a bit here, 

claiming that this situation neither confirmed nor disconfirmed 

the theory. His position was that a higher-level set may be 

failed, even though all relevant lower-level sets are achieved, 

because a subject receives insufficient instruction or practice on 

the higher-level set. According to Gagné, a high occurrence of 
such transitions indicates a poorly administered rather than a 
poorly designed learning program.



The Study of Transfer 19 

To get a measure of support for his theory, Gagné simply di- 
vided the number of confirming types (types 1-2) by the total 
number of relevant types (types 1-3). Gagné compiled data for 
fifteen transitions, all of which were within the range of .91 to 
1.00 on his measure. Generally, as subjects moved up the hier- 
archy, the proportion of + + transitions decreased in favor of 
— — transitions. Indeed, for the three transitions to the penul- 
timate level in the hierarchy (the highest level measured), the 
failure rate was nearly 81 percent. This points to the general 
ineffectiveness of the learning program. As further support for 
this view, the mean percentage of so-called irrelevant types 
(LOWER + , HIGHER — ) was 13 percent but ranged as high as 50 
percent on some transitions. 
Many researchers have failed to find any effect for principled 

curriculum design (VanPatten, Chao, and Reigeluth, 1986). No- 
table among these failed attempts were the scramble studies, 
where carefully designed programs of instruction were pitted 
against versions whose frames had been randomly ordered (Ga- 
vurin and Donahue, 1961; Roe, Case, and Roe, 1962; Levin and 
Baker, 1963; Payne, Krathwohl, and Gordon, 1967; Nieder- 
meyer, 1968; Pyatte, 1969). One moderately successful study 
was done by Buckland (1968), who found that less capable stu- 
dents were hurt by the scrambled curriculum but more capable 
students were not. This is in agreement with Resnick’s analysis. 

In sum, Gagné’s notion of skill hierarchies, while quite intu- 
itive and almost certainly true at some level, has been lacking in 
empirical support. One problem with confirming the theory has 
been that the requisite task analysis is something of an art. 
Gagné himself pointed out that many analyses of the task in 
Figure 1.4 were possible, with some better than others: ‘In 
doing the analysis, we accepted in general the approach to 
solution of simple equations which had been designed into the 
program. This particular approach is by no means the only one. 
In other words, there are perhaps several possible learning set 
hierarchies which could be worked out to support this final task, 
and it is quite conceivable that some are “better” than others in 
the sense of being more efficient or more transferable to later 
learning’’ (Gagné and Paradise, 1961, p. 5). 

In short, Gagné was running into the same representational 
buzz saw faced by Thorndike and the gestalters. Many decom- 
positions of cognitive skill are possible; some promote transfer 
better than others. Indeed, many of the failures to confirm the 
theory have been criticized for having the wrong representation 
of the skill (VanPatten, Chao, and Reigeluth, 1986).



20 The Transfer of Cognitive Skill 

Gagné’s hierarchical, bottom-up view has not been the sole 

position advanced on vertical transfer. Other instructional se- 

quences have been advocated by a variety of educational psy- 

chologists. These include Bruner’s spiral curriculum, where 

topics are introduced and reintroduced at increasing levels of 

detail (Bruner, 1966); Ausubel’s progressive differentiation, 

where complex topics are preceded by more general statements 

called advance organizers (Ausubel, 1968); and Reigeluth’s elab- 

oration theory, where instruction starts at a very general level, 

zooms in to capture detail, and pulls back again to reinforce 

major points (Reigeluth and Stein, 1983; see also Norman, 1973). 

Unfortunately, these theories have received less empirical scru- 

tiny than Gagné’s (with the exception of Ausubel’s), and this 

makes comparisons difficult. Progress has been limited some- 

what in this area by the difficulty of performing the kinds of 

full-blown classroom studies that are required. Recent advances 

in intelligent tutoring may make the study of vertical transfer 

more tractable. 

Contemporary Studies of Transfer 

With the advent of the information-processing approach in psy- 

chology, many traditional learning and transfer issues were 

temporarily set aside. Researchers adopted the strategy of first 

working out the details of performance theories before turning 

their attention to the study of higher-order phenomena. As a 

result, the transfer of cognitive skill has been largely neglected 

by cognitive psychologists throughout the last quarter-century. 

Analogical transfer 

One topic that has received considerable recent attention, how- 

ever, is analogical transfer in problem solving. To solve a prob- 

lem by analogy, a subject is first reminded (or told) of a similar 

problem whose solution is known. The subject then maps the 

solution of that problem (the source) to the current problem (the 

target). Many studies use problem isomorphs, that is, problems 

that differ in terms of superficial features but have the same 

problem-solving operators and search space at some deeper 

level. 
A wide range of studies have shown that, at least in the 

situations concocted by experimental psychologists, people are 

quite bad at noticing similarities between problems and drawing 

on analogous solutions (Reed, Ernst, and Banerji, 1974; Hayes



The Study of Transfer 21 

and Simon, 1977; Weisberg, DiCamillo, and Phillips, 1978; Ho- 

lyoak, 1985). In one such study (Perfetto, Bransford, and Franks, 

1983), subjects were first asked to rate for truthfulness sentences 
such as ‘‘A minister marries several people each week.”’ Then 
the subjects were presented with a set of insight problems 
adapted from Gardner (1978). It just so happened that many of 
the ‘rated sentences hinted rather blatantly at solutions to the 
problems. For example, the preceding sentence can be applied 
to the following problem: ‘“A man who lived in a small town in 
the U.S. married twenty different women of the same town. All 
are still living and he has never divorced any of them. Yet, he 

has broken no law. Can you explain?” (Perfetto et al., 1983, p. 
25). Surprisingly, prior exposure to the sentences had no effect 
on subjects’ probability or type of solution. Subjects did, how- 
ever, make use of the sentences if told explicitly of their rele- 

vance. 
In another series of studies (Gick and Holyoak, 1980, 1983), 

subjects were presented with Duncker’s (1945) classic radiation 
problem: “Suppose you are a doctor faced with a patient who 
has an inoperable stomach tumor. You have at your disposal 
rays that can destroy human tissue when directed with suffi- 
cient intensity. How can you use these rays to destroy the tumor 
without destroying the surrounding healthy tissue?’ (adapted 
from Gick and Holyoak, 1983). Prior to their exposure to the 
target problem, subjects read a story about an analogous mili- 
tary problem and its solution. In the story, a general wishes to 
capture an enemy fortress. Radiating outward from the fortress 
are many roads, each of which is mined in such a way that the 
passing of any large force will cause an explosion. This pre- 
cludes a full-scale direct attack. The general’s plan is to divide 
his army, send a small group down each road, and converge on 
the fortress. The common strategy in both problems is to divide 
the force, attack from different sides, and converge on the tar- 
get. After reading this story, however, only about 30 percent of 
the subjects could solve the radiation problem, which is little 
improvement over the 10 percent baseline solution rate (Gick 
and Holyoak, 1980). A series of follow-up experiments (Gick 
and Holyoak, 1983) found that neither the addition of a con- 
cluding statement conveying the common underlying principle 
nor a diagram depicting that principle made the military story 

any more useful to subjects. 
Why do subjects perform so poorly? According to our simple 

two-stage model of analogical problem solving, difficulties arise 
either in the initial noticing that problems are similar or in the



22 The Transfer of Cognitive Skill 

subsequent mapping from source to target. As far as the notic- 
ing component is concerned, many studies have shown that 
explicit hints about the relevance of the source problem improve 
subject performance dramatically (e.g. Gick and Holyoak, 1980, 
1983; Perfetto et al., 1983; see also Reed, Ernst, and Banerji, 

1974). This indicates that being reminded of the right problem is 
often more problematic than mapping the solution. Ross (1982) 
showed that the reminding process is quite sensitive to many of 
the same interfering and facilitating effects (such as context and 
fan) found in traditional studies of recognition memory. How- 
ever, despite the seeming unreliability of spontaneous analogi- 
cal transfer, some researchers have recently championed 

analogical reasoning as perhaps the most powerful knowledge 
acquisition tool in humans (Neves, 1981; VanLehn, 1983; Ander- 
son and Thompson, in press). In these proposals, analogical 
problem solving often goes by the name of learning by example, 
which can be thought of simply as analogical reasoning with a 
supplied source. 

Although “noticing” is often tantamount to “‘solving,”’ the 
mapping process is perhaps the greater obstacle in more diffi- 
cult problems. A series of studies involving puzzle problem 
isomorphs showed that, even when informed of the relevance 
of the source, subjects often have trouble drawing correspon- 
dences between the two domains and are unable to solve the 

' target problem (Reed, Ernst, and Banerji, 1974; Simon and Reed, 

1976; Hayes and Simon, 1977; Kotovsky, Hayes, and Simon, 
1985). The difficulty in many cases seems to be that subjects 
adopt representations of the two problems that rely too heavily 
on superficial features, which are radically different, and not 
heavily enough on deep, functional relationships, which are 
often the same. Of course, shallow representations typify prob- 
lem solving in the novice. This fact was noticed first by the 
gestalters (e.g. Duncker, 1945) and more recently has been sub- 
stantiated extensively (Chi, Feltovich, and Glaser, 1981; Chi, 

Glaser, and Rees, 1982). In a series of sorting tasks, Chi discov- 

ered that, on the one hand, novice physics students sorted 
mechanics problems in terms of superficial features, like type of 
device involved (pulley, inclined plane) or physics words men- 
tioned in the problem text. On the other hand, experts sorted 
on the basis of abstract, solution-relevant features. For ex- 
ample, they might group together all problems solved by the 
conservation-of-momentum principle. Similar results were 
found in domains as diverse as algebra word problem solving 
(Silver, 1979) and text editing (Kay and Black, 1985). Given that



The Study of Transfer 23 

novices almost by definition are unable to formulate “deep” 
representations, it is no wonder that in many situations they 
find drawing functional correspondences between two prob- 

lems difficult. 
Aside from problems in noticing and mapping, subjects may 

have shown little transfer in the isomorph experiments simply 
because the experimenter had not ensured that something was 
learned in the first place. Typically in these studies, subjects get 
only one trial on both source and target problems. Needless to 
say, one trial may not be enough to learn anything substantial 
about a difficult problem like the tower-of-Hanoi (Hayes and 
Simon, 1977) or missionaries-and-cannibals (Reed, Ernst, and 

Banerji, 1974; Thomas, 1974; Simon and Reed, 1976). For exam- 

ple, in one study control subjects were given an additional trial 
on the source problem, and little improvement was observed 
(Reed et al., 1974). If subjects cannot solve the source, how can 

they be expected to solve the target? Indeed, a series of studies 

by Smith (1986) overturned some of the prior results of Hayes 
and Simon (1977) by showing that substantial transfer was pos- 
sible between tower-of-Hanoi isomorphs, given sufficient prac- 
tice on source problems. 

Specificity of transfer 

Recently there has been a surge of interest in documenting the 
specificity of transfer in a wide range of school-related and 
work-related tasks. One area of research has involved the classic 
Wason card task (Wason, 1966). Subjects were shown four cards 
which had printed on them the symbols A, E, 4, and 7. The task 
was to judge the validity of the following rule, which referred 
only to these four cards: “If a card has a vowel on one side, then 
it has an even number on the other side.” 

The subjects were instructed to turn over only those cards that 
had to be turned over for the correctness of the rule to be 
judged. Forty-six percent of the subjects elected to turn over 
both E and 4, which is a wrong combination of choices. The E 
had to be turned over, but the 4 did not, since neither a vowel 
nor a consonant on the other side would have falsified the rule. 
Only 4 percent elected to turn over E and 7, which are the 
correct choices. An odd number behind the E or a vowel behind 
the 7 would have falsified the rule. Another 33 percent of the 
subjects elected to turn over the E only. The remaining 17 per- 
cent of the subjects made other incorrect choices. 

One might dismiss this failure as subjects’ simply not appre-



24 The Transfer of Cognitive Skill 

ciating the logic of the conditional. However, Cheng et al. (1986) 
showed that subjects do no better if they have had formal train- 
ing in logic. The problem is not that subjects do not know the 
logic of the conditional, but rather that they do not transfer this 
knowledge to the card task. 

Subsequent research showed quite remarkably that subjects 
can achieve high levels of performance if the card selection task 
is presented in other logically equivalent forms. For instance, in 
one isomorphic version of the problem, subjects are told that ‘If 
a person is drinking alcohol, then he must be over 21” and are 
asked whom to check to validate the rule: someone drinking 
alcohol, someone drinking a soft drink, someone over 21, or 

someone under 21. In this case, subjects have no difficulty what- 

soever choosing the proper options, namely, someone drinking 
alcohol and someone under 21. Cheng et al. (1986) argued that 
this is because subjects possess a “permission schema” which 

allows them to reason about such situations but does not pro- 
vide a basis for transfer to the card selection task. Nonetheless, 

the permission schema can be used to judge a wide variety of 
situations. For instance, subjects in the same study were able to 
use it to reason about whether passengers entering a country 
had been checked for cholera. Thus, in this case Thorndike’s 
extreme version of the identical elements model is again wrong. 
There is a real range of transfer for the permission schema. It is 
nevertheless remarkably narrow compared to the generality of 
the conditional logic that underlies it. 

The Ghost of General Transfer 

A fundamental transfer question is whether transfer is neces- 
sarily limited in scope or whether it is broad and ranges across 
diverse disciplines. The broad view, first advocated as the doc- 
trine of formal discipline, was discredited by Thorndike, who 
claimed that transfer was quite specific and was based on the 
existence of identical elements. Thorndike, however, was chal- 

lenged by the gestalters, who showed that a broad range of 
transfer outcomes was possible and that the generality and ap- 
plicability of knowledge was largely dependent upon its repre- 
sentation. Modern cognitive psychology has been greatly 
concerned with the influence of knowledge representation on 
intellectual performance. The possibility of transfer cannot be 
denied outright; its occurrence depends heavily on the nature of 
instruction and the organization of knowledge. It seems, then, 
that what Thorndike called the “superstition of general train-



The Study of Transfer 25 

ing” is making something of a comeback. A variety of research- 

ers have recently called for the identification and codification of 

“general” cognitive skills. Simon (1980) claimed that powerful 

general problem-solving methods do exist, and what's more, 

they can be taught. Brown, Bransford, Ferrara, and Campione 

(1983) decried the emphasis on the teaching of content in to- 

day’s schools and called for more emphasis on the teaching of 

general methods for learning. Rubinstein (1980) reported that at 

the time over thirty colleges and universities offered interdisci- 

plinary courses in general problem solving. A growing number 

of researchers in computer science and education are champi- 

oning computer programming as a powerful new vehicle for 

teaching general problem solving (Winston, 1977; Papert, 1980; 

Linn and Fisher, 1983). What, then, is the current status of the 

notion of general transfer? Is it dead, or very much alive? 

One reason why the notion of general transfer keeps rising 

from the grave is that it is such an attractive proposition for 

psychologists and educators alike. It is the one effect that, if 

discovered and engineered, could liberate students and teachers 

from the shackles of narrow, disciplinary education. Sustaining 

these longings is the fact that it is very difficult to prove some- 

thing does not exist. There is always another manipulation in 

the psychologist’s toolbox to try. 

Unfortunately, despite these yearnings, the evidence for the 

existence of general transfer is not good (Simon, 1980). First of 

all, there were the classic disconfirming studies of formal disci- 

pline (Thorndike and Woodworth, 1901; Thorndike, Aikens, 

and Hubbell, 1902; Thorndike, 1922). A further series of studies, 

initiated by Thorndike (1924), demonstrated that the study of 

such abstract subjects as Latin and geometry in high school had 

no greater facilitating effect on tests of reasoning than did more 

mundane subjects like bookkeeping and shopwork (Carroll, 

1940; Rapp, 1945; Wesman, 1945; Strom, 1960). More recent 

studies (e.g. Jeffries, 1978) have shown no transfer of general 

problem-solving skills across widely different types of problems. 

In a typical study, Post and Brennan (1976) trained subjects for 

several weeks on a general heuristic procedure for solving alge- 

bra word problems. Their instructions included such things as 

“determine what is given” and “check your result.” On a 

problem-solving post-test, the performance of the trained sub- 

jects was no better than that of a control group. Besides this 

spate of negative evidence, there has been no positive evidence 

of general transfer besides a few highly questionable studies 

(Dorsey and Hopkins, 1930; Fawcett, 1935; Hartung, 1942). In



26 The Transfer of Cognitive Skill 

one such study, Bartlett (reported in Hayes, 1980) gave subjects 
an IQ test before and after taking a university-sponsored 
problem-solving course. On average, subjects added seven 
points to their IQs (from 127 to 133). However, no control was 
run, and it is quite possible that test familiarity or some other 
confounding factor contributed to the gain. In sum, there has as 
yet been no strong demonstration of the existence of general 
transfer. 
Why has general transfer in problem solving been so hard to 

detect? One possibility is that general heuristic methods are not 
really that useful. This view is consistent with the current em- 
phasis in cognitive psychology on the role of domain-specific 
knowledge in skilled performance (Chase and Simon, 1973; Les- 
gold, 1984). The picture is evolving of an expert whose skill is 
composed of thousands of specific responses to specific situa- 
tions. For example, Chase and Simon (1973) estimated that chess 
experts have between 10,000 and 100,000 board positions com- 
mitted to memory. Not surprisingly, problem-solving methods 
based on specific knowledge geared toward particular situa- 
tions, the so-called strong methods, outperform widely applica- 
ble methods based on general knowledge, the weak methods 
(Newell, 1973). 

General methods are often useless in problem solving because 
their prescriptions are too vague to apply. Table 1.2, for exam- 
ple, presents a set of general problem-solving heuristics advo- 
cated by Rubinstein (1975). These heuristics all have the ring of 
truth and seem quite reasonable on the surface. However, their 
application to a particular problem is difficult, given the abun- 
dance of abstract nouns in search of referents. In the first heu- 
ristic, the problem solver is told to avoid detail in the initial 
formulation of the problem, but what is detail in the mind of a 
novice? Indeed, it may require substantial expertise to deter- 
mine which details are relevant and which are not ina particular 
situation. In the second heuristic, the problem solver is told to 
prune alternative solution paths by watching for signs of 
progress. Again, how is a novice to recognize signs of progress? 
Generally speaking, as methods get more abstract and widely 
applicable, their useful role in problem solving gets more tenu- 
ous. For practical purposes, the search for referents puts a cap 
on the generality of methods. 

Another reason why general transfer has been so hard to 
detect is that, at least in adults, many of the weak methods are 
highly practiced and therefore drop out of the transfer equation. 
The reason for this is not profound but simply a consequence of



The Study of Transfer 27 

Table 1.2. _Rubinstein’s problem-solving heuristics. 
  

1. Total Picture 
Before you attempt a solution to a problem, avoid getting lost in detail. Go over 

the elements of the problem rapidly several times until a pattern or a total picture 
emerges. Try to get the picture of the forest before you get lost in the trees. 
2. Withhold Your Judgment 

Do not commit yourself too early to a course of action. You may find it hard to 
break away from the path, find it may be the wrong one. Search for a number of 
paths simultaneously, and use signs of progress to guide you to the path that 
appears most plausible. 
3. Models 

Verbalize, use language to simplify the statement of the problem, write it down. 
Use mathematical or graphical pictorial models. Use abstract models such as 

symbols and equations, or use concrete models in the form of objects. 
A model is a simpler representation of the real world problem; it is supposed to 

help you. 
4. Change in Representation 

Problem solving can also be viewed as a change in representation. The solutions 
of many problems in algebra and mathematics in general consist of transformations 
of the given information so as to make the solution, which is obscure, become 
transparent in a new form of representation. Most mathematical derivations follow 
this route. 
5. Asking the Right Questions 

Language in all its forms is a most powerful tool in problem solving. Asking the 
right question, uttering the correct word, or hearing it, may direct your processing 
unit to the appropriate region in your long-term storage to retrieve complete blocks 
of information that will guide you to a successful solution. 
6. Will to Doubt 

Have a will to doubt. Accept premises as tentative to varying degrees, but be 
flexible and ready to question their credibility, and, if necessary, pry yourself loose 
of fixed convictions and reject them. Rejection may take the form of innovation, 

because to innovate is, psychologically, at least, to overcome or discard the old if 
not always to reject it outright. 
7. Working Backward 

Do not start at the beginning and follow systematically step by step to the end 
goal. 

The solution path is as important as the answer and, in problems where the goal 
is specified, the path is the solution. 
8. Stable Substructures 

In complex problems it helps to proceed in a way that permits you to return to 
your partial solution after interruptions. Stable substructures that do not collapse or 
disappear when you do not tend to them will serve this purpose. 
9. Analogies and Metaphors 

Use an analogy whenever you can think of one. An analogy provides a model 
which serves as a guide to identify the elements of a problem as parts of a more 
complete structure. It also helps recognize phases as elements of a complete 
process. 
10. Talk 
When you are stuck after an intensive effort to solve a problem, it is wise to take 

a break and do something else. It is also helpful to talk about your problem at 
various stages in your search for a solution. Talking to someone may help you pry 
loose of the constraints we mentioned, because your colleague may have a different 
world view and he may direct you to new avenues of search when he utters a word 
or asks a question. 
  

Source: Moshe F. Rubinstein, Patterns of problem solving (Englewood Cliffs, N.J.: 

Prentice-Hall, © 1975). Reprinted by permission.



28 The Transfer of Cognitive Skill 

how transfer is measured. Even if a component plays a large 
part in both training and transfer tasks, that component will 
have no measurable effect on transfer unless the performance of 
that component improves as a result of training. If the component 
is already well-practiced before training begins, learning will be 
negligible and no savings will be realized on the transfer task. 
This point highlights the fact that all cognitive skills are learned 
not in isolation but rather against a backdrop of well-practiced 
support skills which go virtually undetected in any measure- 
ment of learning and transfer. This may be one reason why 
Jeffries (1978) found no transfer between missionaries- 
and-cannibals problems and waterjug problems even though 
both involved extensive use of means-ends analysis (Atwood 
and Polson, 1976; Jeffries, Polson, Razran, and Atwood, 1977). 
Presumably, Jeffries’s adult subjects had already acquired and 

automated means-ends analysis prior to her experiment. Noth- 
ing significant was gained through their repeated practice other 
than a slight speedup. In short, weak methods show no transfer 
because they show no improvement. 

Given the available evidence, the prospect of general transfer 
is rather dim. The problem faced by the architect of general 
transfer is a difficult one. He or she must discover a general 
method that is indomitable by strong methods, concrete enough 
to be applied easily, and yet novel to most adult subjects. 

It seems a fair generalization of the literature to assert that 
transfer, when it does occur, depends on shared or overlapping 
content. The shared content can be quite specific, as in a rule for 
simplifying equations or an arithmetic fact. Or it can be quite 
general, as in a problem-solving method or language compre- 
hension facility. The reason there is little general transfer is that 
the general components tend to be well-learned upon entering 
most training situations. 

There is another way in which general transfer might occur, 
having to do with the idea behind the doctrine of formal disci- 
pline. The formal discipline view is based on two premises: (1) 
the mind is a general-purpose computing system (like a com- 
puter’s CPU) that can be deployed to execute very different 
tasks, and (2) it is something whose computation can improve. 
The appropriate analogy is muscle. Strengthening muscle in one 
task improves its performance in another task. It is now abun- 
dantly clear that the mind is not a muscle in this sense. Thus the 
conjunction of premises (1) and (2) cannot be true. Moreover, 
premise (2) is known to be true because the mind can improve 
its performance on specific tasks in very much the same way



The Study of Transfer 29 

that muscle gains strength. Thus, premise (1) must be the prob- 
lem. Hence, we can conclude that the units of knowledge in the 

mind are functionally separate with respect to their potential for 
improvement. 

But what of two tasks which require the same underlying 
knowledge? Why is there sometimes failure of transfer here? 
Why should subjects trained in logic not succeed at the Wason 
card selection task? This might be seen as a perversity in the 
design of the mind, but we do not think so. We think there is an 
inevitable and necessary difference between having knowledge 
in the abstract and being able to use it in a particular situation. 

Consider an extreme example. Suppose someone has been 
told the rules of chess. Then theoretically that person has the 
knowledge to play a perfect game of chess; he or she can use 
these rules to generate all possible moves and countermoves 
and thus select the best move in all cases. Of course, to expect 
this amount of transfer from instruction on the rules of chess is 
ridiculous. Brute force deployment of knowledge is computa- 
tionally too expensive. What a person has to learn is how to 
deploy this knowledge in specific game situations. For instance, 
he or she might learn the value of a forking pattern by playing 
several games involving that pattern. While the value of the 
pattern is a logical deduction (or nearly so) from the rules of 
chess, how should the beginner know to focus attention (and 
deductive resources) on this pattern in preference to the millions 
of other patterns possible? The basic point is that any piece of 
knowledge can be deployed in many ways, and a person has to 
learn which pieces are useful. To make matters worse, the 
amount of knowledge a person has is much more than just the 
rules of chess, and in many situations, like the Wason task, a 

large fraction of it is potentially relevant. Why should someone 
realize that his or her training in logic should be brought to bear 
on the task? And why in this form? And even if that knowledge 
is brought to bear in the right form, it is a nontrivial task to get 
a problem-solving system to map it onto the task in the right 
way. As Cheng et al. documented, people bring this knowledge 
to bear only in special situations where it is obviously relevant. 
It seems that situated learning (Rogoff and Lave, 1984) is an 

inevitable consequence of the huge combinatorial space of ways 
to use knowledge. 

From this perspective, the acquisition of knowledge per se is 
not the fundamental issue. Rather, the fundamental issue con- 

cerns the acquisition of a particular use of knowledge and the 
range of circumstances over which that use will extend (as-



30 The Transfer of Cognitive Skill 

suming the strong version of Thorndike’s identical elements 
model cannot be right). We think that the ACT* theory of skill 
acquisition provides a suitable framework for understanding 
this issue. 

The ACT* Theory of Skill Acquisition 

Previous attempts at understanding the transfer of cognitive 
skill have had limited success, largely because of inadequate 
theoretical and formal tools. It is especially timely to revive 
interest in transfer now because detailed, comprehensive theo- 
ries of skill acquisition now exist (e.g. VanLehn, 1983; Rosen- 
bloom and Newell, 1986). Of these theories, we chose to apply 
the ACT* theory (Anderson, 1983) to the problem. 

The ACT* theory of skill acquisition lies within a broader class 
of theories that use production systems to model human cogni- 
tion (Newell and Simon, 1972; Thibadeau, Just, and Carpenter, 
1982). In its basic formulation, a production system consists of a 
set of condition-action rules, called productions, and a working 
memory. For example, a simple production for inserting char- 
acters in the text editor EMACS would be: 

IF the goal is to insert a character =char 
and the editor is EMACS 
and the desired character position is marked by 

the cursor 
THEN type =char. 

In this production, the symbol =char denotes a variable that 

matches any character. A production such as this fires when the 
conditions of the IF clause of the production match the contents 
of working memory. The IF clause can contain references not 
only to the current goal but also to other contextual elements. 
When more than one production matches on a particular cycle 
of the system, certain conflict resolution principles apply to 
select a single production for application. This enforces a strict 
seriality on the flow of control (for a more detailed description of 
production systems, see Waterman and Hayes-Roth, 1978; 

Brownston, Farrell, Kant, and Martin, 1985). 
ACT* differs from many production system architectures in 

that, in addition to production memory, a second kind of long- 
term memory is involved: a declarative memory. Whereas pro- 
ductions represent procedures, declarative structures are used 
to encode facts, such as “John is married” or ‘‘the delete key 
deletes characters.’” Although the focus here is on the learning



The Study of Transfer 31 

of procedures, the declarative component cannot be ignored in 
the study of procedural learning. 

The ACT* theory breaks down the acquisition of cognitive 
skill into two major stages: a declarative stage, where a declara- 
tive representation of the skill is interpreted by general produc- 
tions, and a procedural stage, where the skill is directly embodied 

in domain-specific productions. The transition from the declar- 
ative to the procedural stage is achieved by the process of 
knowledge compilation. Knowledge compilation consists of two 
separate mechanisms: the composition mechanism collapses se- 
quences of general productions into highly specific productions, 
and the proceduralization mechanism deposits domain knowIl- 
edge from long-term memory directly into productions. Taken 
separately, these compilation mechanisms can account for many 
of the phenomena associated with practice: elimination of piece- 
meal application of operators, dropout of verbal rehearsal, fewer 
working memory errors, and power-law speedup (Anderson, 
1982). 

An important recent modification to the theory has been the 
addition of structural analogy as a mechanism for translating 
initial declarative encodings into action. Extensive studies of 
novice LISP programmers (Anderson, Farrell, and Sauers, 1984; 
Pirolli and Anderson, 1985), as well as studies of arithmetic and 

algebra instructional materials (Neves, 1981; VanLehn, 1983), 

have exposed the importance of example problems to the initial 
performance of a skill. Anderson (1986) showed how an analogy 
mechanism coupled with the standard knowledge compilation 
mechanisms can not only achieve the transition from declarative 
to procedural knowledge but also generalize the resultant pro- 
cedural representation. This is done by abstracting common 
features of the source and target of the analogy. 

Modeling transfer in ACT* 

When the ACT* theory is applied to the study of transfer, single 
productions are the units of cognitive skill, the elements that 
Thorndike was searching for. A first approximation to an un- 
derstanding of transfer involves comparing two sets of produc- 
tions for different tasks. To the extent that the production sets 
overlap, transfer would be positive from one task to the other. 
To get a slightly more quantitative prediction, weights might be 
assigned to the productions according to their frequency of use 
in the transfer task. 

This simple formulation is in fact a modern version of



32 The Transfer of Cognitive Skill 

Thorndike’s theory of identical elements. Where it differs from 
that formulation is primarily in the fact that, unlike Thorndike’s 
superficial elements, productions are versatile and powerful 
computational formalisms. As shown by Chomsky (1957), be- 
haviorist systems like Thorndike’s lack the computational power 
to handle many of the difficult processing problems faced by 
humans. However, productions systems have the computa- 
tional power of Turing machines (Anderson, 1976). Productions 
are abstract and can be used to represent many different yet 
functionally equivalent methods at various levels of generality. 
For example, production systems can be used quite naturally to 
model both the rote and the meaningful methods studied by the 
gestalters. Productions are often used to represent cognitive 
processes which have no impact on the external world yet none- 
theless play an important role in skilled behavior, like planning 

and problem decomposition. Therefore, not only external but 
also internal actions are considered in calculations of transfer. 
Indeed, one can model general problem-solving methods like 
analogy and means-ends analysis by production rules. Thus, 
transfer of general problem-solving methods can be analyzed as 
just a special case of transfer defined on the identity of produc- 

tions. 
Production system models of transfer have already been ap- 

plied with reasonable success (Moran, 1983; Polson and Kieras, 
1985; Singley and Anderson, 1985; Kieras and Bovair, 1986). 

Although these initial attempts look promising, the purely pro- 
cedural approach is at best a useful first approximation to un- 
derstanding something as complex as transfer of cognitive skill. 
Notably lacking is any mention of the declarative component in 
calculations of transfer. The ACT* theory makes a strong claim 
about the importance of declarative knowledge during the early 
stages of skill acquisition. However, simple production system 
models of transfer make no allowance for declarative knowl- 
edge, so there can be no declarative component in the transfer 
equation. In some well-defined cases this omission can lead to 
erroneous predictions. 

A declarative-procedural taxonomy 

Given the fundamental distinction between declarative and pro- 
cedural knowledge in ACT*, we may define a broad taxonomy 
of transfer types based upon the type of knowledge acquired in 
the training task and the type of knowledge applied in the 
transfer task. Figure 1.5 shows that either declarative or proce-



The Study of Transfer 33 

Target knowledge 

procedural declarative 
  

procedural 

Source 
knowledge 
  

declarative         
Figure 1.5. Taxonomy of transfer types. 

dural knowledge may serve as the source or the target, thus 
generating a 2 X 2 taxonomy. The four different types of trans- 
fer can be characterized as: procedural to procedural, declarative 

to procedural, declarative to declarative, and procedural to de- 

clarative. 
Procedural-to-procedural transfer is the kind of transfer cap- 

tured by the simple production system formulations. 
Procedural-to-procedural transfer occurs when productions ac- 
quired in the training task apply directly to the transfer task. 
This type of transfer is automatic as long as the transfer task is 
represented in a way that allows the productions to apply (some- 
times a reworking of the representation of the transfer task is 
required before this kind of procedural transfer takes place). A 
precondition is that a fair amount of practice on the training task 
is done so that the appropriate productions are formed. 

Since the productions apply directly and without modification 
in the transfer task, this type of transfer might be criticized as 
not being transfer at all. Thorndike’s theory received this criti- 
cism, namely that transfer had to be more than just doing the 
same thing over again, that true transfer required the ‘making 
over’ of old knowledge to fit the new situation. However, be- 
cause of their abstract and general character, the same produc- 
tion rules can underlie performance in rather different tasks and 
different contexts. The intelligence in the system does not reside 
in the transfer mechanisms but rather in the initial learning 
mechanisms which cast the productions at the proper level of 
abstraction. : 

Declarative-to-procedural transfer occurs when declarative 
structures acquired in the training task aid in the acquisition of 
productions in the transfer task. The transition from declarative 
to procedural knowledge occurs routinely in the acquisition of a



34 The Transfer of Cognitive Skill 

single skill; in this sense, transfer of this type is quite common. 
Declarative structures can also contribute to the acquisition of a 
new skill if the structures happen to serve as precursors of 
productions in that skill. Interestingly, the same declarative 
structures can constitute the base of many skills which, once 

compiled, have little overlap at the production level. It is in 
these situations that inclusion of the underlying declarative 
component is most important in calculations of transfer. 

In the ACT* theory, the transition from declarative to proce- 
dural knowledge is mediated largely by the process of structural 
analogy. Analogy takes the declarative representation of an old 
solution and modifies that solution for use in the present prob- 
lem. As a by-product, a production rule is generated which 
captures the essence of the solution and generalizes across ir- 
relevant features in the source and target. Here, then, is where 

flexibility and adaptation reside in the system: in the analogical 
mapping of declarative structures. Through this mapping, a 
production rule is created at an appropriate level of abstraction. 
Since analogy is a complex, error-prone process (Halasz and 
Moran, 1982), this type of transfer is much less certain than 
procedural-to-procedural transfer. The spate of analogical trans- 
fer studies showing little or no transfer attest to this fact. 

Declarative-to-declarative transfer occurs whenever existing 
declarative structures either facilitate or interfere with the acqui- 
sition of new declarative structures. As we reviewed, this is a 
widely studied topic in psychology, occupying years of effort of 
the verbal learners. More recently, psychologists have studied 
such diverse topics as the fan effect in sentence memory (Ander- 
son, 1983; Reder and Ross, 1983), the effect of domain-specific 

knowledge on memory (Chase and Simon, 1973; Voss, 
Vesonder, and Spilich, 1980), and the role of macrolevel know!- 
edge structures in comprehension (Schank and Abelson, 1977; 

Bower, Black, and Turner, 1979). All of these topics are in a 
sense instances of declarative-to-declarative transfer. Needless 
to say, being concerned primarily with the transfer of cognitive 
skill, we have nothing new to say about this type of transfer in 
this book. 

Procedural-to-declarative transfer involves cognitive skills that 
facilitate the acquisition of declarative knowledge. Are there 
skills of this type? Certainly yes. Most notable are the basic 
language skills of reading and speech comprehension without 
which no one could assimilate modern culture. After these basic 
skills are mastered, the acquisition of more sophisticated study 
skills, such as summarizing text, asking questions, and note



The Study of Transfer 35 

taking, may improve performance further (Day, 1980; Brown, 
1981; Brown, 1982). Since the acquisition of cognitive skill al- 
ways involves the acquisition of some declarative base, these 
advanced study skills hold out considerable promise for general 
transfer. This type of transfer may be somewhat of a special case 
for our purposes, however. Once again, our interest is primarily 

in the acquisition and transfer of procedural, not declarative, 
knowledge. 

Overview of the Study 

The goal of our research is to identify the elements and mech- 
anisms of transfer working within the ACT* framework. We 
restrict ourselves to transfer from either procedural or declara- 
tive knowledge to procedural knowledge. Our approach is char- 
acterized by four features: novice representations, emphasis on 
learning, multiple trials, and fine-grained analyses. We place 
heavy emphasis on novice rather than expert representations of 
skill because this allows a much larger role for declarative and 
control structure components in the transfer equation. These 
representations are determined through a combination of ratio- 
nal task analysis, protocol analysis, and quantitative modeling. 
At this stage in theory development, we feel that, given a sub- 
ject’s representation, we can fairly accurately predict the direc- 
tion and magnitude of transfer. The task that remains most 
difficult, however, is determining the representation. 

An emphasis on learning is important because, before we can 
possibly understand what is transferred, we must understand 

what is learned. In fact, common elements models of transfer 
are totally explained in terms of learning, in that the elements of 
transfer are merely subsets of the elements of learning. For this 
reason, we devote a large share of our attention to issues of 

learning. 
Multiple trials are essential because many studies have 

probably underestimated transfer by failing to ensure that 
something was learned in the first place. It is not surprising 
that transfer is minimal when subjects have only a single trial 
in both the base and transfer tasks. To better understand both 
learning and transfer, we trace our subjects’ performance over 
multiple trials. This methodology yields more sensitive mea- 
sures of transfer than single trials, in much the same way that 
time to relearn is a more sensitive measure of retention than 
recall or recognition. 

Finally, in any account of learning and transfer, the level of



36 The Transfer of Cognitive Skill 

analysis is critical. Central to our effort is the goal of determining 
the loci of transfer at the finest grain of analysis possible. Most 
desirable would be a grain size that allowed for the separation 
and independent measurement of all learning and transfer com- 
ponents. This would allow the most rigorous test of any com- 
mon elements theory of transfer. Given imperfect theories of 
skill representation and imperfect behavioral measures, how- 
ever, this is presently and perhaps forever impossible. Unable to 
determine a priori the proper grain of analysis, we have con- 
ducted a series of analyses at several different grain sizes. We 
hope to understand learning and transfer by successive approx- 
imation, using the more aggregate measures to guide our anal- 
ysis at more detailed levels. 

This book first provides an in-depth analysis of the process by 

which cognitive skill is acquired in ACT*. Productions in ACT” 
have a number of features which make them suitable as the 

identical elements upon which to base a theory of transfer. They 
are discrete and independent entities, which have a range of 
application across diverse situations. They have a degree of 
abstractness that avoids many of the difficulties in the original 
Thorndike formulation. Data from the LISP tutor (Anderson, 

1987) make the point that production rules do indeed have these 
properties. Learning in the LISP tutor is a paradigm case of 
vertical transfer, where knowledge from earlier lessons transfers 
to later lessons. 

After examining vertical transfer, we turn our attention to the 
more critical issue of lateral transfer. We analyze the transfer 
among various text editors as a function of the number of pro- 
ductions they share. This position receives remarkable support 
through a series of microanalyses in which transfer sites are 
localized to very specific components of the skills. 

Negative transfer among skills is obtained in a variety of 
ways within the identical productions model. The primary 
way is essentially an Einstellunglike phenomenon whereby 
productions optimal for one skill are transferred to another 
where they are nonoptimal. Another text-editing study, as 
well as other research from our laboratory, provides support 
for this position. 

Production-based transfer implies that when a skill is well- 
tuned for one application, there may not be transfer to another 
skill that uses the knowledge in related ways. We describe a 
calculus experiment that provides support for this prediction. 
Specifically, we find no transfer among the skills of translating 
word problems into equations, selecting calculus operators to



The Study of Transfer 37 

apply to these equations, and applying these operators. Other 

results from our laboratory show a similar encapsulation of 
knowledge. 

We present a detailed simulation model of learning in the 
calculus experiment, which starts with a declarative representa- 
tion of the instruction given in calculus, uses the weak methods 
of analogy and means-ends analysis to solve problems, and 
compiles productions specific to the particular skills. One out- 
come of this simulation is the realization that our prediction of 
total encapsulation of knowledge is too strong. The productions 
used in the various calculus activities do share a common de- 
clarative base. Learning one component should transfer to an- 
other component to the extent they reinforce the common base. 
However, this transfer should be observed only during the early 
stages of learning. Another calculus experiment isolates the de- 
clarative transfer of components to the beginning stages of skill 
acquisition. 

The ACT* perspective on transfer illuminates much of the 
recent research done in other laboratories. It also casts light on 
what we feel is the most important remaining conceptual prob- 
lem in research on transfer, the issue of representation. As it 
turns out, all transfer predictions depend critically on assump- 
tions about the representation of the task. This raises the ques- 
tion of whether one can always fashion the task representation 
to avoid disconfirmation of a theory of transfer. Our answer is 
that important constraints from other sources can be applied to 
determine representations independently of transfer data. 

Appendix: Transfer Designs and Formulas 

To study transfer, one must first decide how it is to be mea- 
sured. A variety of methods have been proposed over the years 
for this task. Gagné, Forster, and Crowley (1948) reported at 
least four transfer formulas then in wide usage. Given the same 
data, each yielded somewhat different results, making the in- 

terpretation and comparison of different studies difficult. In- 
deed, failure to reach consensus on this methodological point 
may have hindered early scientific progress on transfer (Ellis, 
1965). Even today, different researchers use different formulas 
to compute transfer. 

The use of a particular formula is often dictated by the use of 
a particular experimental design. Table 1.3 shows the prototyp- 
ical transfer design and some of its variants. In the prototypical 
design (design 1), to determine the amount of transfer from task



38 The Transfer of Cognitive Skill 

Table 1.3. Transfer designs. 
  

  

Design Group Training task —‘ Transfer task 

1 Experimental A B 

Control — B 

2 Experimental A B 

Control B B 

3 Experimental (Pretest B’) A B 

Control (Pretest B’) B B 

4 Experimental, A B 

Experimental, B A 
  

A to task B, one simply presents an experimental group with 
practice on task A followed by task B. The performance of this 
group is compared with that of a control, which has no training 

task and starts directly with task B. If the performance of the 
experimental group on task B is better than the control, then 
there is positive transfer from task A to task B; if it is worse, then 
there is negative transfer. 
Two formulas are possible with such a design. The first, called 

the raw score formula by Gagné et al. (1948), is simply the dif- 
ference between scores of the experimental group (E) and con- 
trol group (C) on the transfer task (B): 

(1.1) Traw = Ca — Ep 

This version of the formula is used for dependent measures like 
time on task, where higher scores mean worse performance. For 
those dependent measures where the reverse is true (e.g., per- 
cent correct), the control score should be subtracted from the 
experimental score. This ensures that positive transfer is de- 
noted by positive values and negative transfer by negative val- 
ues. 

The strength of this formula is its simplicity and precision of 
meaning. The magnitude of transfer is expressed directly in 
terms of the units used to measure performance, like seconds or 
percent correct. The major weakness of this formula, however, 
is that comparisons of transfer among different kinds of tasks 
are often impossible. 

This deficit is remedied somewhat by a formula that normal- 
izes the amount of savings by the level of performance of the 
control:



The Study of Transfer 39 

Cr —E 
(1.2) To, improvement — a x 100 

B 

This formula is quite popular (e.g. Reed, Ernst, and Banerji, 
1974; Thomas, 1974; Hayes and Simon, 1977; Smith, 1986). 

However, the problem of comparison across tasks is not really 
solved by this formula, because no provision is made for the 
fact that different amounts of improvement are possible in dif- 
ferent tasks. As an absurd example, take the comparison of 
transfer between the tasks of (1) finding a book in a strange 
library and (2) finding the same book in the same location and 
then reading it aloud. We make these assumptions in this 
somewhat bizarre example: 

1. Reading the book takes much longer than finding the book. 
2. The reading component, being highly practiced in adult 

subjects, shows little improvement, whereas the finding com- 
ponent, which makes use of knowledge acquired specifically in 
this experimental situation, shows much improvement. 

3. There is total transfer from finding the book the first time 
to finding the book the second time. 

Given such a situation, formula (1.2) would show virtually no 
transfer from the task of finding the book to the task of finding 
and reading the book, yet nearly total transfer in the reverse 
direction. This case of asymmetric transfer is spurious, because 
the longer task is dominated by a highly automated component 
which shows negligible improvement. In fact, there is total 
transfer in the learned component between the two tasks. Gen- 
erally speaking, comparisons using formula (1.2) are misleading 
whenever the tasks being compared differ in terms of the pro- 
portion of compiled subcomponents. A more meaningful for- 
mula, then, would express the amount of savings exhibited by 
an experimental group as a percentage of the total amount of 
learning possible in the transfer task, not the gross level of per- 
formance of the control. 

There have been two approaches to measuring the amount of 
learning possible in the transfer task. The first, advocated by 
Katona (1940) and used extensively in this book, is to compare 
the savings resulting from practice on the training task with an 
equal number of trials of direct practice on the transfer task. This 
necessitates a slightly different transfer design (design 2). The 
control group, in essence, gets the designated transfer task as 
both a training and a transfer task. The resultant formula is:



40 The Transfer of Cognitive Skill 

—E 
(1.3) Ty, learning = ae x 100 

The numerator is the difference between the control and exper- 
imental groups on the first set of trials on the transfer task (B1). 
The denominator is the improvement of the control groups on 
the transfer task over two sets of trials (B1 and B2). This formula 
implies that total positive transfer results when the benefit de- 
rived from practice on some training task equals the benefit 
derived from the same amount of practice on the transfer task. 
The measure varies sensibly from 0 to 100, although negative 
values and values greater than 100 are possible. The former 
values represent negative transfer, and the latter values a kind 
of supertransfer, where practice on task A results in better even- 
tual performance on task B than the same amount of direct 
practice on task B. Such a situation is rare but occasionally arises 
when Task B is quite difficult and cannot be attempted directly, 
as is the case in certain part-to-whole training situations (Fitts 
and Posner, 1967). 

The second approach to measuring the amount of improve- 
ment possible in the transfer task is to determine the fotal 
amount of improvement possible rather than simply the amount 
of improvement associated with a certain number of trials. This 
approach, advocated by Gagné et al. (1948), was used occasion- 
ally in verbal learning research (Murdock, 1957). With this ap- 
proach, the formula becomes: 

Cri _ Epi 

~ Cai — performance limit *< 100 
  

(1.4) Tg, total learning 

With dependent measures like percent or number correct, the 
performance limit is defined quite naturally as 100 percent or the 
total number of items. However, with other dependent mea- 
sures like time on task, the performance limit is often impossible 

to determine and in fact may be undefined. Classic studies of 
practice have shown that improvement, however slight, is still 
possible after thousands of trials (Rosenbloom and Newell, 
1986). Another weakness of this formula is that it is misleading 
to compare studies where different amounts of practice are given 
on the training task. The savings realized by the experimental 
group (the numerator) is divided by a term which in a sense is 
constant and is insensitive to the amount of practice. Formula 
(1.3) does not suffer from these problems and, on balance, seems 

to be the superior measure for the study of cognitive skill.



The Study of Transfer 41 

Other variations on the prototypical design have been used 

widely (Gagné et al., 1948; Woodworth and Schlosberg, 1954; 

Ellis, 1965). Design 3 involves adding a pretest on task B prior to 

the experimental manipulation. Groups are matched in terms of 

this pretest score. Design 4 involves having both experimental 

groups act as each other’s control. Of course, each of designs 3 

and 4 requires slight modifications to accommodate formula 

(1.3).



2 / Transfer in the ACT* Theory 

Attey of transfer should be anchored in a theory of learn- 
ing, since, at least in common elements models, the 

elements of transfer are simply subsets of the elements of learn- 
ing. In this chapter, before discussing production rules as the 
identical elements, we explain how they are acquired and how 
they are used to perform a particular skill. Following this review 
of the ACT* theory of skill acquisition, we derive predictions for 
transfer, and review data relevant to those predictions. 

To illustrate these processes of learning and transfer, we use 
a domain different from the text-editing and calculus domains 
which are the major focus of later chapters. Here, for the sake of 
generality, we use programming skill in the artificial intelligence 
language LISP as our focus. This is where the ACT* theory of 
skill acquisition originally had its most extensive application 
(Anderson, Farrell, and Sauers, 1984). The examples are delib- 

erately chosen to use only the most basic concepts of LISP, so 
that lack of programming knowledge will not be a barrier to 
understanding. Our analysis focuses on vertical transfer, or how 
production rules acquired early in the LISP curriculum apply to 
later material. In subsequent chapters, we will focus on lateral 
transfer, that is, transfer among skills at roughly the same level 

of complexity. 

Acquisition of LISP Programming Skills 

Cognitive processing in the ACT* theory occurs as a result of the 
firing of productions. Productions are condition-action pairs



Transfer in the ACT* Theory 43 

which specify that if a certain state occurs in working memory, 
then particular mental (and possibly physical) actions should 
take place. Here are two “Englishified’’ versions of productions 
(P) that are used in our simulation of LISP programming: 

Pl 
IF the goal is to write a solution to a problem 

and there is an example of a solution to a similar 
problem 

THEN set a goal to map that template to the current case. 

P2 
IF the goal is to get the first element of =list 

THEN write (car =list). 

The first production (P1) is one of a number of productions for 
achieving structural analogy. It looks for a problem similar to the 
current problem but with a worked-out solution. If such an 
example problem exists, this production will fire and propose 
using the example as an analog for solving the current problem. 
This is a domain-general production and executes, for instance, 

when we use last year’s income tax forms as models for this 
year’s income tax forms. In the domain of LISP it helps imple- 
ment the common strategy of using one LISP program as a 

model for writing another. 
The second production (P2) is one that is specific to LISP and 

recognizes the applicability of car, a basic LISP function that 
returns the first element of a list. For instance, the function call 

(car ‘(A B C)) returns A. In P2 =list is a variable that can have 

different values depending on the problem. In this case it would 

have the value (A B C). 
One important question a learning theory must address is how 

a system, starting out with only domain-general! productions like 
P1, acquires domain-specific productions like P2. 

Solving a novel problem 

To illustrate both how productions fire in sequence to solve a 
problem and how domain-specific productions are derived from 
domain-general productions, it is useful to examine the protocol 
of a subject who is first learning to define new functions in LISP. 
Defining functions is the principle means for creating LISP pro- 
grams. The problem faced by our subject BR was to define a 
function called first which returns the first element of a list. First 
does the same thing as the system function car and is therefore



44 The Transfer of Cognitive Skill 

completely redundant. Thus, the problem of defining first is 
really just an exercise in the syntax of function definitions. 

Prior to this problem, BR had spent approximately five hours 
learning some of the basic functions that come with LISP (like 
car) and becoming familiar with variables and list structures. As 
preparation for this particular problem, BR read the instruction 
in Winston and Horn (1981) on how to define functions using 

the LISP function defun. Although that description of function 
definition occupies nearly five pages, the only things BR made 
reference to in solving the problem were an abstract template 
showing the parts of a function definition and some example 
definitions in the text. The template and one of these examples 
are given below. In the template, those terms delimited by angle 
brackets denote placeholders that need to be filled in by the 
student. The example function, called f-to-c, converts a temper- 
ature (temp) from fahrenheit to centigrade: 

(defun <FUNCTION NAME> 
(<PARAMETER 1> <PARAMETER 2>... 
<PARAMETER n>) 

<PROCESS DESCRIPTION>) 

(defun f-to-c (temp) 
(quotient (difference temp 32) 1.8)) 

Anderson, Farrell, and Sauers (1984) reported a production 
system simulation of BR’s protocol that reproduces the major 
steps. Figure 2.1 presents the goal structure generated by both 
BR and the simulation in solving this problem. BR begins by 
selecting the abstract template as an analog of the function she 
wants to write. A set of domain-general productions for doing 
analogy then try to use this template. Subgoals are set to map 
each of the major components of the template. Knowing that 
defun is a special LISP function which appears in all function 
definitions, she writes this first and then writes first, which is 
the name of the function she wants to write. 

BR has trouble mapping the structure: 

(<PARAMETER 1> <PARAMETER 2>... 

<PARAMETER n>) 

The reason is that she has no idea what parameters are. How- 
ever, she looks at the concrete example of f-to-c and correctly 
infers that the parameter list simply contains variable names 
that will be the arguments to the function. First has a single 
argument, which she chooses to call list1.



Transfer in the ACT* Theory 45 

BR then turns to the mapping of <PROCESS-DESCRIPTION> 
but again has trouble. As before, she looks to the example and 
finds that <PROCESS-DESCRIPTION> is just the LISP code the 
calculates the result of the function. Consequently, she writes 
car, which returns the first element of a list. This is one of only 
two places in the original coding of the function where a LISP- 
specific production fires. We assume this production was ac- 
quired from her earlier experience with LISP. To review, her 
code at this time is: 

(defun first (list1) (car. . . 

A major hurdle remains in this problem, namely to write the 
argument to the function car. BR again looks to the example for 
guidance on coding arguments to functions called within the 
function definition. She notes that the first argument in the f-to-c 
example is contained in parentheses—(difference temp 32). This is 
because the argument is itself a function call, and function calls 
must be placed in parentheses. In defining first, she does not 
need parentheses, because the argument list] is a simple vari- 
able. However, she does not recognize the distinction between 

her situation and the example. She places her argument in pa- 
rentheses, producing the complete definition: 

(defun first (list1) (car (list1))) 

When the argument to a function is a list, LISP attempts to 
treat the first element inside the list as a function call. Therefore, 
when BR tests first, she gets the error message ‘Undefined 
function: list1.”" In the past, she has corrected this error by 
quoting the offending list. So she produces the patch: 

(defun first (list1) (car ‘(list1))) 

This, then, is the second and final place where a LISP- 

specific (and in this case, incorrect) production fires in the 
simulation. When BR tests this function on the input list (A B 
C), she gets the answer list1 rather than A, because LISP now 

returns the first item of the literal list (list1) (the single quote 
in front of (list1) tells LISP that this is not a function call). 

Eventually, after some additional thrashing, she finally pro- 
duces the correct code: 

(defun first (list1) (car list1)) 

This problem was solved by 38 subjects in the LISP tutor 
(Anderson and Reiser, 1985) and a number of other subjects in 

informal experiments. BR’s solution is typical of novice problem-



46 The Transfer of Cognitive Skill 

solving in many ways. The two places where she has difficulty, 

specifying the function parameters and specifying the argument 
to car, are the two major stumbling blocks for LISP tutor sub- 
jects. Her error in specifying the argument to car is made by over 
half of the tutor subjects given the same example. An informal 
observation is that people with no background at all in LISP, 
given information about what car does, the function definition 

template, and the f-to-c example, tend to solve the problem in 
the same way as BR and make the same first error. Thus, it 
seems that much of the problem-solving is controlled by analogy 
and not by any detailed understanding of LISP. The success of 
the simulation also suggests that problem solving by analogy 
can be well modeled by a production system with a hierarchical 
goal structure. 

Knowledge compilation 

In the course of solving the problem first, the simulation of BR 
creates two new productions which summarize much of the 
solution process. It does so by a knowledge compilation process 
(Anderson, 1982, 1983) that collapses sequences of productions 
into single productions that have the same effect as the se- 
quence. Typically, as in this case, the process converts domain- 
general productions into domain-specific productions. The two 
productions acquired by ACT™ are: 

P3 
IF the goal is to write a function, = func, of one vari- 

able, =var, 
THEN write (defun =func (= var) 

and set as a subgoal to code the relation calculated 
by this function 

and then write ). 

P4 
IF the goal is to code an argument 

and that argument corresponds to a function para- 
meter, =var 

THEN write =var. 

Figure 2.1 indicates the set of productions that were collapsed 
to produce each of these productions. The first production sum- 
marizes the analogy process that searched the template for in- 
formation concerning the syntax of a function definition; this 
production now directly produces that syntax without reference 
to the analog. Similarly, the second production summarizes the



“ 
~ 

  

      

Transfer in the ACT* Theory 

  

  

  

      

  

              
    

  
  

  

  

    
  

  

      

   

      

  

    
  

  

      

  

  

    
  

  

      

    

      

Write ~~ 
~o-7 7 Tfunction ~ ss 

-7 I ~S 
7 Map N 

template ‘ 
\ 

\ 

Map Map Map Map \ 

DEFUN function parameters process \ 

| 
DEFUN FIRST Sf i 

Analogy Analogy | 
between between | 

template template / 
and F-TO-C and F-TO-C / 

t | / 
Analogy yy 
between Code 7 

F-TO-C and a FIRST [FO 
\ FIRST 7 relationship 
\ / 

\ ’ | N 
\ (LIST1) Code | 

- an — ~ 

ae 7” 7 argument \ 

to . 7 N 
Compiled N 
as P3 \ 

—_o om -” \ 
--— \ 

Anology ‘(LIST 1) 
between x 

F-TO-C and Code Map 
FIRST top-level code 

example 

(LIST 1) 

= ~~ Write -” 

Compiled variable 

as P4 { 

LIST 4 

47 

Figure 2.1. Trace of the goals set by the simulation of BR as it tried to code a simple LISP 
function. 

search that went into finding the correct argument to the func- 
tion and now directly produces that argument. 
Armed with these two additional productions, the simulation 

was given another LISP problem to solve. This was to write a 
function called second which retrieved the second element of a list. 
Although second is a more complex function definition, both the 
simulation and the subject produced much more rapid and suc- 
cessful solutions to this problem. The speedup in the simulation 
was due to the fact that fewer productions were involved, thanks



48 The Transfer of Cognitive Skill 

to the compiled productions. Additionally, the computationally 
expensive process of analogy was no longer required. 

Thus, the knowledge compilation process predicts a marked 
improvement as one goes from a first to a second problem that 
involves the same productions. Substantiating the results of BR 
are more extensive studies with the LISP tutor, where students 

similarly code first and then second. The number of errors in 
function definition syntax (controlled by P3) drops from a me- 
dian of 2 in first to a median of 0 in second, and the time to 

instantiate the function template drops from a median of 237 
seconds to a median of 96 seconds. The number of errors in 
specifying the argument (controlled by P4) drops from a median 
of 3 in first to a median of 0 in second, and the time to enter the 
argument drops from a median of 96 seconds to a median of 26 
seconds. By any measure, these are impressive one-trial learn- 
ing statistics. This marked speedup has also been observed in 
the domain of geometry proof generation (Anderson, 1982). 
Later in this chapter we will present more comprehensive data 
on this one-trial learning phenomenon. 

Important features of the ACT* theory 

The simulation of BR illustrates three important features of the 

ACT™* theory: 

1. Productions as Units of Procedural Knowledge. The major pre- 
supposition of the entire ACT* theory and certainly key to the 
theory of skill acquisition is the idea that productions form the 
units of procedural knowledge. Productions define the steps in 
which a problem is solved and are the units in which procedural 
knowledge is acquired. 

2. Hierarchical Goal Structure. ACT* production systems spec- 
ify hierarchical goal structures that organize the problem solv- 
ing. Figure 2.1 illustrates such a hierarchical goal structure. This 
goal structure is an additional control construct that was not 
found in many of the original production system models (New- 
ell, 1973; Anderson, 1976) but now is becoming quite popular 
(e.g. Brown and VanLehn, 1980; Laird et al., 1984). It has proven 
impossible to develop satisfactory cognitive models that do not 
have some overall sense of direction in their behavior. As can be 
seen with respect to this example, the hierarchical goal structure 
closely reflects the hierarchical structure of the problem. Just as 
important as their role in controlling behavior, goals organize 
the learning by knowledge compilation. They indicate which



Transfer in the ACT* Theory 49 

parts of the problem solution belong together and can be com- 
piled into new productions. 

3. Initial Use of Weak Methods. This simulation nicely illustrates 
the critical role analogy plays in getting initial performance off the 
ground. There is a serious question about how a student can solve 
a problem in the absence of domain-specific productions. This 
example shows that the student can in fact mimic the structure of 
a previous solution. However, this simulation also shows that, in 
contradiction to frequent characterizations of imitation as mind- 
less (e.g. Fodor, Bever, and Garrett, 1974), the analogy mecha- 
nisms that implement this process of imitation can be quite 
sophisticated (for other discussions of use of analogy in problem 
solving, see Kling, 1971; Winston, 1979; Carbonell, 1983). While 

analogy is one way of getting started in problem solving, it is not 
the only way. It is an instance of weak problem-solving methods 
(Newell, 1969), which are characterized by their generality and 
broad applicability across domains. They are called weak because 
they do not take advantage of domain characteristics. Other 
examples of weak problem-solving methods are means-ends 
analysis and pure forward search. In our discussion of the cal- 
culus simulation in Chapter 6, we will show how the weak 
methods of analogy and means-ends analysis combine to trans- 
late declarative encodings of skill into action. 

4. Knowledge Compilation. All knowledge in the ACT* theory 
starts out in declarative form and must be converted to proce- 
dural form (i.e. productions). This declarative knowledge 
might be encodings of examples, instructions, or general prop- 
erties of objects. The weak problem-solving methods can apply 
to the knowledge while it is in declarative form and can interpret 
its implications for performance. The actual form of the declar- 
ative knowledge determines the weak method adopted. For 
instance, in the simulation of BR, analogy was used because 
the declarative knowledge was almost exclusively in the form 
of templates and examples. In a geometry simulation dis- 
cussed by Anderson (1982), the declarative knowledge largely 
came in the form of statements about how to prove conclusions. 
This tended to evoke a working-backward problem-solving 
method. When ACT™ solves a problem, it produces a hier- 
archical solution generated by productions. Knowledge compi- 
lation is the process that creates efficient domain-specific 
productions from this trace of the problem-solving episode. The 
goal structure is critical to the knowledge compilation process in 
that it indicates which steps of the original solution belong 
together.



50 The Transfer of Cognitive Skill 

Outlined here is a fairly complete theory of how new skills are 
acquired: knowledge comes in declarative form, is used by 
weak methods to generate problem solutions, and as a by- 
product, new productions are formed. The key step is the 
knowledge compilation process, which produces the domain- 

specific skill. 
These are the major factors that influence the acquisition of 

productions. However, two additional factors influence their 
execution. These might be viewed as performance factors that 
modulate the expression of competence, except that these fac- 

tors can be improved with learning: 

1. Strength. The strength of a production determines how 
rapidly it applies, and production rules accumulate strength as 
they successfully apply. While accumulation of strength is a 
very simple learning mechanism, there is good reason to believe 

that strengthening is often what determines the rate of skill 

acquisition in the limit (i.e. after much practice). The ACT 

strengthening mechanism accounts for the typical power- 
function shape of learning curves following production compi- 
lation (Anderson, 1982). 

2. Working Memory Limitations. In the ACT* theory there are 

two reasons why errors are made: the productions are wrong, or 

the information in working memory on which they operate is 

wrong. This latter reason implies that even perfect production 
sets can display errors due to working memory failures. In fact, 

the only way “slips” can occur in the ACT* theory is through the 

loss of critical information from working memory. Conse- 

quently, the wrong production fires or the right production fires 

but produces the wrong result. Just as learning has an impact on 

production strength, it has an impact on working memory er- 

rors. Working memory capacity for a domain can increase with 
practice, reducing the number of such errors with expertise 
(Chase and Ericsson, 1982). 

Conspicuous by its absence in this discussion is any mention of 

the ACT* mechanisms of generalization and discrimination 

which create new productions by inductive, syntactic transfor- 

mations of existing productions. More recent research and the- 
orizing has led us to the conclusion that such inductive 

mechanisms are not part of the process of production acquisition 

(Lewis and Anderson, 1985). Rather, we can get the effect of 

generalization of productions by compiling the anaiogy process 

as summarized in Figure 2.1, where we analogized to a set of 
examples and compiled the process into a set of generalized



Transfer in the ACT* Theory 51 

production rules. Thus, the ACT* processes of generalization and 
discrimination do not figure in our analysis of skill acquisition. 

Productions as Identical Elements 

In the simulation of BR, there were two kinds of domain-specific 
knowledge that contributed to the coding of first. First, there 
were declarative encodings in the form of templates and exam- 
ple functions. These were used by the weak methods. Second, 
there were two productions (one correct, one buggy) which had 
been previously compiled. By the time the simulation coded 
second, all knowledge was in the form of LISP-specific produc- 
tions. In this chapter and the next few, we are going to focus on 
this production-based transfer and ignore the declarative-based 
transfer, which plays only a short-lived role during the early 
stages of skill acquisition. 

Our basic proposal is that productions, once learned, can 
serve as the identical elements of Thorndike’s theory. In saying 
this, we are asserting that productions have four desirable fea- 
tures that make them quite suitable for this purpose: 

1. Independence. Productions are learned independently and 
transfer independently. Thus, one does not have to worry about 
possible interactions among productions as they occur in new 
combinations in transfer tasks. 

2. All-or-None Learning. The knowledge compilation process is 
characterized by all-or-none, one-trial learning. One moment 
there is no production, and the next there is. If one is going to 
count productions to predict transfer, it is useful that they have 
this property. 

3. Strength Accrual. Although the existence of productions has 
a discrete, all-or-none quality, there must be some basis for 
predicting the effect of amount of practice on degree of transfer. 
Production rules do continue to accumulate strength after their 
initial formation. Increased strength of productions means more 
rapid and reliable performance. 

4. Abstractness. The major difficulty with Thorndike’s proposal 
was his tendency to tie the elements to the surface structure of the 
behavior. ACT* productions, because of their variables and goal 
structures, achieve a desired level of abstraction. 

Studying Skill Acquisition in the LISP Tutor 

To support our claims that LISP programming skill can be ana- 
lyzed in terms of ACT* productions, that productions defined



aaa EE 

52 The Transfer of Cognitive Skill 

by such an analysis exhibit the critical properties outlined, and 

that productions as identical elements account for the vertical 

transfer of programming skill, we draw on the data base of 

student performance with the LISP tutor. The LISP tutor has 

been under development for several years in our laboratory 

and currently teaches a full-semester self-paced course at 

Carnegie-Mellon University. While the tutor has been shown 

to have a positive impact on students (Anderson, Boyle, Cor- 

bett, and Lewis, in press), that is not our concern here. We 

study performance on the LISP tutor because it exposes in 

exquisite detail the microstructure of a complex skill and its 

acquisition. 

Students working with the tutor sit down in front of a ter- 

minal with a textbook on LISP (Anderson, Corbett, and 

Reiser, 1987). They first read a few pages of the text des- 

cribing several new LISP concepts and then turn to the termi- 

nal to write a number of programs involving those concepts. 

The tutor monitors their interactions at the terminal and tries 

to provide corrective instruction. If a student has difficulty 

with a particular concept, the tutor will provide addi- 

tional problems until the student has achieved a certain level 

of mastery. 
Our view of the learning process in this situation is that 

from reading the textbook, students acquire a declarative 

knowledge base from which they can compile the necessary 

productions to perform the skill. The text was written with 

just this in mind: each section contains just enough informa- 

tion and examples from which to compile a few additional 

productions. Thus, the transition from the textbook to the tu- 

tor provides an example of declarative transfer in that the de- 

clarative knowledge derived from the text greatly facilitates 

the compilation of the correct productions for writing LISP 

code. However, the transition from the textbook to the tutor is 

not a well-analyzed portion of the students’ history nor the 

focus of concern here. Our focus is on students’ interactions 

with the LISP tutor as they write code. This allows us to con- 

sider transfer of productions from problem to problem over 

the course of the curriculum. Any extended learning history 

has the potential for this kind of transfer in that skills learned 

earlier in the course are applied to the solving of problems 

later in the course. Our prediction is that individual produc- 

tions transfer totally from lesson to lesson as the identical el- 

ements model would predict.



Transfer in the ACT* Theory _ 53 

Sample dialogue 

Table 2.1 contains a dialogue between the LISP tutor and a 
hypothetical student coding a recursive function to calculate 
factorial. Recursive programming is a fairly advanced topic in 
LISP which involves the use of functions that call themselves in 
the solution of a problem. A recursive function is usually struc- 
tured as a conditional with one terminating case, where the 
recursion stops and the problem is solved directly, and one or 
more recursive cases, where the problem is decomposed by 
additional calls to the recursive function. In this case, the recur- 
sive function calculates the factorial of an integer. 

The dialogue in Table 2.1 does not present the tutor as it really 
appears to students. Instead, it shows a “‘teletype’’ version of 
the tutor where the interaction is linearized. In the actual tutor 
the interaction involves updates to various windows. In the 
teletype version the tutor’s output is given in normal type while 
the student’s input is shown in bold characters. These listings 
present “snapshots” of the interactions; each time the student 
produces a response, we list his input along with the tutor’s 
response (numbered for convenience). The total code as it ap- 
pears on the screen is shown, although the student has added 
only what is different from the previous code (shown in boldface 
type). For instance, in line 2 he has added zero as an extension 

of (defun fact (n) (cond ((... 
To illustrate the functioning of the LISP tutor, we will briefly 

trace the dialogue between tutor and student on this problem. 
Coding in the LISP tutor involves the instantiation of tutor- 
provided templates. For example, in the first line of the dia- 
logue, when the subject typed (defun, there appeared the 
template: . 

(defun <NAME> <PARAMETERS> <BODY>) 

The terms in angle brackets (<>) denote placeholders that the 
subject replaces with pieces of code. The subject is required to 
first fill in the <NAME> slot, then the <PARAMETERS> slot, 
and finally the <BODY> slot. At all points parentheses are 
balanced and syntax is checked by the tutor. 

Although the student initially has some difficulty with the 
syntax of the conditional tests in lines 1 and 2, he manages to 
code the terminating case for the factorial function correctly. 
Typically, we find that students have little difficulty with termi- 
nating cases but have great difficulty with recursive cases. The



54 The Transfer of Cognitive Skill 

Table 2.1. Sample LISP tutor dialogue. 

Define the function fact. It takes a number argument, n, and 
computes the factorial of n, which is the result of multiplying n x 
n-1xn-2.... X 1. For instance, (fact 3) = 3 x 2 x 1 = 6. By 

definition, the factorial of 0 is 1. 
1. (defun fact (n) 

(cond ((equal) <ACTION>) 
<RECURSIVE-CASE>)) 

I assume that you are trying to test if the number argument is 
equal to the number zero. There is a special function for testing 
equivalence to zero. Try to use that function instead of EQUAL. 

What code can you write to test if the condition for the terminating 
case is true? Try writing a predicate. 
2. (defun fact (n) 

(cond ((zero <ACTION>) 
<RECURSIVE-CASE>)) 

Did you mean zerop (y or n)? y 

3. (defun fact (n) 
(cond ((zerop n) 1) 

<RECURSIVE-CASE>)) 
Is the value of fact in the recursive cases calculated by: 
PRESS: IF YOU WANT TO: 

1 Calling fact recursively with n 
2 Multiplying n by fact of n minus 1. 
3 Getting 12... and then multiplying the results. 
4 Have the tutor choose. 
Menu choice: 3 

That is a reasonable way to think of doing factorials, but it is not a 
plan for a recursive function. Since you seem to be having trouble 

with the recursive cases, let us work through some examples and 
figure out the conditions and actions for each of these cases. 
The recursive relationship is the relationship between fact called with 
n and fact called with: 

PRESS: IF YOU WANT TO: 
1 n minus 1 

2 n equal to 0 

3 n plus 1 
4 Have the tutor choose 

Menu choice: 1 
We will consider some concrete examples. We will characterize 

the recursive relationship between fact called with 1 and fact called 
with 0. 

What is the value of (fact 1)? 
Answer: 1 
What is the value of (fact 0)? 
Answer: 1 (continued)



Transfer in the ACT* Theory 55 

Table 2.1. (continued) 
  

EXAMPLES 

fact (n) fact (n — 1) 

A. (fact 1) = 1 (fact 0) = 1 
We will consider some more concrete examples. We will charac- 

terize the recursive relationship between fact called with 3 and fact 

called with 2. 
What is the value of (fact 3)? 

  

  

Answer: 6 
What is the value of (fact 2)? 
Answer: 2 

EXAMPLES 
fact (n) fact (n — 1) 

A. (fact 1) = 1 (fact 0) = 1 
B. (fact 3) = 6 (fact 2) = 2 

Since there is only one recursive case characterized by the exam- 
ples you have just worked out, the condition in this case can be 
coded simply as T. We will focus on characterizing the action in 

this case. 
In examples A and B what do you have to do to get the result of 

fact called with n? 
PRESS: IF YOU WANT TO: 

1 Multiply n by one less than n. 
2 Multiply n by fact of one less than n. 
3 Add n to the result of fact called with one less than n. 

4 Have the tutor choose. 

Menu choice: 2 
We have worked through a series of examples that illustrate the 

recursive relation. We will now return to the goal of trying to 
produce LISP code that specifies the recursive relation. 
4. (defun fact (n) 

(cond ((zerop n) 1) 

(t (fact ))) 
You will have to use fact at some point but right now you want to 

multiply. 
5. (defun fact (n) 

(cond ((zerop n) 1) 
(t (times n (fact n))))) 

You cannot just code n at this point. What you want to do is 

subtract 1 from n. 

6. (defun fact (n) 
(cond ((zerop n) 1) 

(t (times n (fact (difference))))) 
Difference would work in this case, but it is more appropriate to 

use the function SUB1 when you are substracting 1 from a number. 
7. (defun fact (n) 

(cond ((zerop n) 1) 
(t (times n (fact (sub1 n)))))) 

You are done. Type NEXT to go on after testing the function you 

have defined. 
 



56 The Transfer of Cognitive Skill 

dialogue after line 3 illustrates how the tutor guides the student 
through the design of the recursive case. It does this by first 
leading the student through a couple of examples of the rela- 
tionship between fact n and fact n-1 and then getting the student 
to identify the general recursive relationship. Figure 2.2 shows 
the actual screen image at a critical point in the design of this 
function. 

The dialogue after this point shows two of the common errors 
students make in defining recursive functions. The first, in line 
4, is to call the function directly without combining the recursive 
call with other elements. The second, in line 5, is to call the 

function recursively with the same argument rather than a sim- 
pler one. 

After the student finishes coding the function, he goes to the 
LISP window and experiments. He is required to trace the func- 
tion, and the recursive calls embed and then unravel. Figure 2.3 

shows the screen image at this point with the code on the top 
and the trace on the bottom. 

The tutor works by a method called model tracing. Residing in 
the tutor are a set of productions which, when applied in dif- 

  

In examples A and B what do you have to do to get the result 
of fact called with n? 

PRESS: IF YOU WANT TO: 
1 Multiply n by one less than n. 
2 Multiply n by fact of one less than n. 
3 Add n to the result of fact called with one less than n. 
4 Have the tutor choose. 

Menu Choice: 2 
  

CODE FOR fact 
  

(defun fact (n) 

(cond ((zerop n) 1) 

  

  

<RECURSIVE-CASE>)) 

EXAMPLES 

fact (n) fact (n-1) 
A. (fact 1) = 1 (fact 0) = 1 
B. (fact 3) =6 (fact 2) = 2     
  

Figure 2.2. Representation of the screen image after line 3 in Table 2.1.



Transfer in the ACT* Theory 57 

  

--- YOU ARE DONE. TYPE NEXT TO GO ON AFTER --- 
--- TESTING THE FUNCTIONS YOU HAVE DEFINED --- 

(defun fact (n) 

(cond ((zerop n) 1) 

(t (times n (fact (sub 1 n)))))) 

  

THE LISP WINDOW 
  

= > (trace fact) 
(fact) 

= > (fact 3) 
1 <Enter> fact (3) 
\2 <Enter> fact (2) 
| 3 <Enter> fact (1) 
| |4 <Enter> fact (0) 
| 14 <EXIT> fact 1 
| 3 <EXIT> fact 1 
|2 <EXIT> fact 2 
1 <EXIT> fact 6 
6       
Figure 2.3. Final screen image at the end of the dialogue in Table 2.1. 

ferent combinations and orders, are capable of generating a 
wide range of correct solutions to a particular problem. We 
analyze the students’ behavior by putting it into correspondence 
with a sequence of productions in the tutor. We can decompose 
the students’ behavior by taking an interaction that begins with 
a prompt from the LISP tutor and ends with a correct symbol in 
the code and assign it to the production that generates the code. 
Thus, in the case of the earlier protocol, there was a point where 
the code had the form: 

(defun fact (n) 

(cond ((zerop n) 1) 

(t <ACTION>))) 

The next interaction with the tutor ended when the student 
typed (times to replace the <ACTION> slot above. That period 
of time was associated with the firing of the following produc- 
tion in the LISP tutor: 

IF the goal is to multiply one number by another 
THEN use the function times 

and set as subgoals to code the two numbers.



58 The Transfer of Cognitive Skill 

We can compute the time associated with this segment and the 
number of errors (in this case, one) and assign these dependent 
measures to this production. Our analysis will be concerned 
with these dependent measures calculated for individual pro- 
ductions. 

Vertical Transfer in the LISP Tutor 

Typically, programming problems posed by the LISP tutor in- 
volve several new productions and many productions learned 
earlier. Corresponding to the four features of productions as 
identical elements are four predictions we want to make about 
student performance: 

1. Independence. The production rules learned in earlier les- 
sons transfer totally to the current lesson. Specifically, produc- 
tion performance should be solely a function of the level of 
strength accumulated in earlier lessons. Also, except for general 
subject ability factors, performance on one production should 
not predict performance on another. 

2. All-or-None Learning. The new productions compiled from 
declarative knowledge should show a marked discontinuity in 
their learning curves corresponding to the compilation process. 

3. Strength Accrual. Subsequent to the compilation disconti- 
nuity, productions should show a slow power-law improve- 
ment in performance characteristic of the ACT* strengthening 
mechanism. 

4. Abstractness. Access to rules should not depend on problem 
context. Specifically, the time or likelihood of a production firing 
should not depend on where it appears either within a partic- 
ular problem or across problems. 

Student interactions with the LISP tutor provide a data base 
that allows us to put these predictions to test. As described 
earlier, the interactions with the tutor can be easily transformed 

into a sequence of productions that we assume have fired in the 
students’ heads and the times associated with each. This is a 
level of analysis that graduate students used to spend years 
achieving for a few subjects solving a few problems. We can 
achieve it automatically for a full class of students doing a se- 
mester’s worth of work. 

A key feature of the LISP tutor is that it keeps students on one 
of many correct solution paths. The tutor is often prepared to 
follow a student along hundreds of different paths, but this is 
much less than the thousands of paths, mostly incorrect, that



Transfer in the ACT* Theory 59 

students have been observed to follow. At any point in solving 
a problem, there is a limited set of correct productions that the 

tutor is prepared to fire next. Depending on the student's input, 
one of four things can happen: 

1. The student generates an action that matches the action of 
one of the correct productions. The tutor assumes that this 
production is the one that fired in the student’s head and simply 
waits for the next production to fire. 

2. The student makes an error, the tutor responds to that 
error with feedback, and then the student generates an action 

that corresponds to a correct production. The tutor assumes 
that, with the help of the feedback, the student figured out the 
correct answer and is now back on track. 

3. The student asks for help either immediately or after an 
error. The tutor provides the student with an explanation of the 
next step in the problem and then provides the piece of code 
that corresponds to that step. The assumption is again that this 
explanation was sufficient to get the student back on track and 
the student is in the same mental state as the tutor. 

4. The student generates three errors in the execution of a 
single production. In this case, the tutor offers help as if it had 
been requested directly and provides the next correct step. 

The underlying assumption in these interactions is that before 
doing the next part of the problem, the student and the tutor are 
in the same mental state. From informal observations we know 
there are occasions when this is not true. A mismatch occurs 
when the student either misunderstands the problem statement 
or the feedback given by the tutor. This means that there is a 
certain amount of noise built into our error attribution. We 
attribute an error to a production applying in state x whereas a 
different production might be applying in state y. It is difficult to 
know the extent of this “noise” in the data and how it compares 
with noise in other sorts of data. As always, the final indicator 
is the reliability and interpretability of the results. 

Given our methodology, there are two basic categories of data 
to collect from the LISP tutor, error measures and time mea- 
sures. The data we will analyze come from 34 students who 
were taking our LISP course in the spring of 1985. The students 
were humanities and social science majors, and this was their 

first programming course. While they went through 12 lessons 
with the LISP tutor, we will analyze data from only the first six 
(see Conrad and Anderson, 1988, for analysis of a full semester). 
These lessons involved (1) basic LISP functions, (2) function



60 The Transfer of Cognitive Skill 

definition, (3) conditionals and logical predicates, (4) helping 
functions, (5) input-output, and (6) iteration. Following these 
first six lessons, students took a paper-and-pencil test which 
provides an external validation of the LISP tutor results. 

Results 

The data are organized by lesson and aggregated over produc- 
tion. Figures 2.4 and 2.5 plot the performance on the new pro- 
ductions for several lessons. Figure 2.4 plots the times for 
correctly applied productions, and Figure 2.5 plots the mean 
number of errors per application (this measure has a maximum 
of three). We plot times for correct applications only, to get a 
measure that is independent of errors (we also analyzed time 
aggregated over correct applications and errors, but this mea- 
sure does not seem to reveal any additional insights). We chose 
to analyze total number of errors per application in Figure 2.5 
rather than probability of error because we believe it is a better 
measure of student difficulty. Students often make single errors 
and correct them as slips. Repeated mistakes are strong evi- 
dence that a student has a fundamental problem. Lesson 1 has 
been excluded from this analysis because measures are unreli- 

    

  

  

  
  

20F 

Ww 

oO 

6 L 5 esson oO 
& lO - 

@ Average 
S Lesson2 

Lesson 3 

5 = 

i { ] i 

| 2 384 5&8 

Opportunities 

Figure 2.4. Mean times for correct coding of the actions corresponding to nine produc- 
tions introduced in lesson 2.



Transfer in the ACT* Theory 61 

  
  

OOF 

” 

oO 
tes 
h 

@ 

SOL Lesson 5 
a 

o 
2 
E 

> Average 

Lessone2 
20b Lesson3 

| l j l 

| 2 384 5-8 

Opportunities 

Figure 2.5. Mean number of errors in coding the actions corresponding to nine produc- 
tions introduced in lesson 2. 

able as students learn the interface; lessons 4 and 6 have been 

excluded because they introduce very few new productions. 
We plot these measures as a function of the number of times 

a production is tested in the lesson. Both scales are logarithmic. 
Both time and errors show a marked drop-off from first to sec- 
ond application and a very modest decline after that. The aver- 
age improvement from first to second trial is almost 50 percent 
for time and over 50 percent for accuracy. We plot this on a 
log-log scale to make the point that this drop-off is not just part 
of the power-law improvement normally seen for a skill. 

The rate of improvement after the first trial is basically linear 
in these two logarithmic measures. This implies a power func- 
tion relating either time or errors to amount of practice. This 
result is typically found in studies of practice. However, the 
clear discontinuity from trial 1 to trial 2 has not been examined 
in detail until now. It is consistent with the knowledge compi- 
lation mechanism in ACT*, which is basically a one-trial learning 
mechanism. This result shows up in times for errorless trials as 
well as number of errors. 

Perhaps our most important question concerns the transfer of 
productions across lessons. Figure 2.6 examines the relative per-



62 The Transfer of Cognitive Skill 

  

  
  

    

  

  

2or 

20F 

3 15 
5 384 

© IOF . 2&5 
Y) oS Average 

5&6 
5 base 

O l l i L 

First Last First Last 
previous previous current current 

lesson lesson lesson lesson 

(a) time per production 

.80r 

10F 

wm ‘SOF 
—_ 

oO 
© .50F 
@ 

tgu0 

oO 40F 

o 
Q .30F 
£ 
— 

Zz .2OF 

10F 

283 
1 I 

First Last First Last 
previous previous current current 

lesson lesson lesson lesson 

(b) errors per production 

Figure 2.6. Average times and errors for old productions across lesson boundaries. 

formance of shared productions across lesson boundaries. We 
plot the performance of shared productions on the first trial in 
lesson n-1, the last trial in lesson n-1, the first trial in lesson n, 

and the last trial in lesson n. Plotted are the transitions between 
lesson pairs 2 and 3, 3 and 4, and 5 and 6 (there are very few 
shared productions between lessons 4 and 5). However, the 
pattern in these results emerges most clearly in the average of 
these lesson transitions. There is nearly total transfer of shared



Transfer in the ACT* Theory 63 

productions between lessons and considerable improvement 
within lessons. The slight decrement in performance at lesson 
boundaries can be attributed to forgetting (lessons are approxi- 
mately one week apart). These results are evident in both time 
and accuracy measures. 

One might wonder how much support these analyses really 
offer for the existence of the production rules used in the LISP 
tutor. The apparent regularity of the data is consistent with the 
view that the LISP tutor provides the psychologically correct 
decomposition of the skill. However, an alternative interpreta- 
tion arises from the fact that the production rules tend to corre- 
spond to pieces of code in LISP. For instance, the production 
CODE-CAR corresponds to typing car and the production 
CHECK-ARG corresponds to typing a variable name. What if 
we simply monitored how accurately students wrote these 
pieces of code and ignored the production rule analysis? Al- 
though correlated, a code-based analysis is not identical to a 
production-based analysis. This is because in some cases there is 
a many-to-one relationship between production rules and types 
of LISP code. For instance, while CODE-CAR usually is respon- 
sible for generating car there is a special production CODE- 
SECOND which generates CAR when we are composing a car- 
cdr sequence. 

We examined a number of instances where multiple produc- 
tions corresponded to the same coding action. For the sake of 
discussion, let us assume that productions P1 and P2 have the 
same overt action and further that P1 was introduced first. One 
test of the production-based view is to look at the error rate on 
the first trial for P2 and compare it with the error rate on the 
most recent preceding trial for P1. To summarize the results, the 
average error rate for 6 such cases were as follows: the first 
trial for P2 was 1.3 errors, whereas the most recent trial for P1 

was .3 errors. This difference is highly significant (t, = 4.09; 
p < .01 ) and represents a dramatic reversal of the general trend 
of better performance with practice. The conclusion is that sub- 
ject performance is better defined in terms of the LISP tutor 
productions than surface code. 

In sum, the overall pattern of data displayed in these graphs 
is quite consistent with the ACT* learning mechanisms. There is 
the discontinuous point of learning from the first trial to the 
second due to knowledge compilation, a power-law growth in 
strength with practice, and total transfer mediated somewhat by 
forgetting (loss of strength) between lessons.



64 The Transfer of Cognitive Skill 

Effects of problem context 

A critical question is whether there is any systematic effect of the 
context in which a product.on is firing. For example, are pro- 
ductions slower or faster to fire, the more embedded they are in 
the code? Does time to fire a production depend on the produc- 
tion that has immediately preceded it? Our prediction is that 
problem context should have little effect on production perfor- 
mance. 

Conrad and Anderson (1988) did a series of regression anal- 

yses to see if they could detect any effect of contextual variables. 
There was only one such variable which seemed to have an 
effect, and this was serial position in the code. Time to execute 

a production decreases as one progresses through the code as a 
power function of serial position within the code. Through mul- 
tiple regression analysis, it was determined that this effect is due 
to serial position per se and not potentially correlated variables 
like depth of the code or a confound of production identity with 
serial position. Our explanation of this effect is that subjects are 
getting faster as they rehearse the problem statement as well as 
their plan for solution. As they commit this information to long- 
term memory, their working memory load decreases, informa- 
tion is maintained more reliably, and performance improves. 

Interproduction Correlations 

Another question is how well performance on one production 
correlates with performance on another. Once again, our claim 
is that productions are completely independent of each other in 
terms of acquisition. We used number of errors as our depen- 
dent measure in calculating interproduction correlations because 
it proves to yield the largest numbers. 

In our initial pass over the data, we divided the entire set of 

productions into those that dealt with list operations and those 
that did not, which to us seemed like an intuitively plausible 
clustering. We looked at correlations within and between these 
disjoint sets. The average correlation was .17 both within and 
between sets. This is somewhat surprising, because it indicates 
that there is no tendency for productions of the same type to 
cluster. Intuitively, one might have suspected that some sub- 
jects would do well on all list operations and others would not. 
However, it appears that correlations between productions of 
this type are not higher than those found between apparently 
unrelated productions. Both correlations are quite significantly



Transfer in the ACT* Theory 65 

different than zero, indicating some systematic individual dif- 

ferences among subjects. Thus, there appears to be a general 
ability factor, but not one associated with list operations. 

We also calculated correlations among productions within the 
same lesson, excluding the correlation of a production with 
itself, which would be one. The average within-lesson correla- 
tion is .23, which is significantly higher than the earlier .17 
correlation. This indicates a tendency for subjects to have good 
lessons and bad lessons, which is not surprising. Again, if we 
divide the set of productions within a single lesson into list and 
nonlist sets and compare the correlations within and between 
sets, there is no difference. 

It would be premature at this point to conclude that produc- 
tions do not break up into thematic clusters. One possibility is 
that we simply did not intuit properly the factors that would 
define the clusters. To check this possibility, we subjected the 
data from the six lessons to factor analyses. We took the matrix 
of subject-by-production performance means for each lesson 
and submitted it to a standard factor analysis program. We then 
looked at the first two factors extracted for each lesson. As 
before, the measure of total errors consistently accounted for the 
most variance, so we restrict our discussion to analyses per- 
formed on this measure (for detailed reports of the factor anal- 
ysis, see Anderson, in press). 

At first, we could not make a great deal of sense out of the 
factor analyses. Productions were not clustering according to 
any semantic feature we could discern. In addition, the compo- 
sitions of the factors were changing from lesson to lesson. For 
example, certain productions loaded on different factors for ear- 
lier lessons but the same factor for later lessons. In a further 
attempt to make sense of the situation, we took each subject’s 
scores on the two factors for each lesson and subjected these to 
a factor analysis to determine which lesson factors would cluster 
together. Two ‘‘metafactors’” emerged. The first metafactor ac- 
counted for 36 percent of the variance, and the second metafac- 
tor 16 percent of the variance. 

What defines these metafactors became apparent only after 
considerable inspection. Twenty-two of the 34 productions or- 
ganized under metafactor 1 are new productions in the lessons 
associated with the factors, whereas 20 of the 23 productions 
organized under metafactor 2 are old. Thus, the first metafactor 

is essentially an acquisition factor, while the second is a reten- 
tion factor. This helps explain why the previous clustering of 
productions seemed arbitrary and why the clusters did not stay



66 The Transfer of Cognitive Skill 

constant across lessons. Each production changes its status from 
new to old across a particular lesson boundary and coinciden- 
tally switches factors. 

It seemed worthwhile to see how well these metafactors 
would do at predicting performance on the paper-and-pencil 
midterm. We took subjects’ scores on the two metafactors and 
classified them as above or below the median. This gave us ten 
subjects in both the high-high and low-low categories, and seven 
in both the high-low and low-high categories. A 2 x 2 between- 
subjects analysis of variance (ANOVA) using midterm grade as 
the dependent measure yielded significant effects for both the 
acquisition factor (F(1,30) = 5.1) and the retention factor (F(1,30) 

= 6.4). The interaction was not significant (F(1,30) = 2.8). These 

results provide additional support for the psychological validity 
of the metafactors. 

Anderson, Conrad, and Corbett (in preparation) did find 
some thematic clustering in later lessons with the LISP tutor. 
The clearest case concerned the first lesson in which recursion 
was introduced. They found one factor composed of opera- 
tions concerned with terminating cases and another factor 
composed of operations concerned with recursive cases. It 
seems a bit implausible to propose some people are better 
predisposed to deal with terminating cases while others are 
better predisposed to deal with recursive cases. Upon rein- 
spection of the LISP textbook, however, it became apparent 
that discussion of terminating cases occurred in one place 
while discussion of recursive cases occurred in another. Per- 
haps a more plausible explanation for these two factors is that 
subjects read one of these sections carefully and the other 
haphazardly. Interestingly, these two factors did not reappear 
in later lessons. Presumably, by the time subjects had gotten 
through the first recursive lesson, they had mastered both sets 
of material. 

Conclusion 

Prior to the data analysis, we articulated the four fundamental 
properties that define productions as the identical elements in a 
Thorndikelike analysis. Here is a summary of the results rele- 
vant to those properties: 

1. Independence. Productions do appear to transfer totally from 
one lesson to the next. The only factors producing interdepen- 
dence among productions are general subject abilities (the ac-



Transfer in the ACT* Theory 67 

quisition and retention factors) and variation in subject effort 
(this latter factor explains the higher within-lesson correlations 
and also the distinction between terminating and recursive 
cases). 

2. All-or-None Learning. New productions do have a qualita- 
tive transformation from the first trial to later trials. 

3. Strength Accrual. Productions do seem to accrue strength 
according to the gradual power-law functions predicted by 
ACT™. 

4. Abstractness. Except for the nonspecific effects of working 
memory load, production performance does seem to be inde- 

pendent of problem context. 

The confirmation of these assumptions with data from the 
LISP tutor constitutes a significant justification for carrying them 
forward in further analyses of transfer. In particular, we would 
like to use these assumptions to analyze lateral rather than 
vertical transfer. Our identical elements model should be capa- 
ble of predicting transfer fairly well in many lateral transfer 
situations.



3 / Lateral Transfer 

W: are now in position to launch into a study of lateral 
transfer, transfer between skills at the same level of com- 

plexity. From an applied perspective, lateral transfer is a key 
issue, in that the debate about general transfer is largely a de- 
bate about lateral transfer. We start with a rather thorough 
analysis of a study of transfer between various text editors. This 
study (Singley and Anderson, 1985) provides our first evidence 
that an identical productions model might do well at predicting 
transfer among skills. Later research torces complications and 
elaborations on the picture that emerges from this study, spe- 
cifically the importance of the declarative component in certain 
transfer situations. However, the basic points of this text-editing 
study remain unchanged, providing the framework for those 
later studies. 

Lateral Transfer in Text Editing 

We chose text editing as our domain for a variety of reasons, but 
perhaps most important was the existence of a well-specified 
theory of expert performance. Card, Moran, and Newell (1976, 
1980, 1983) put forth a series of information-processing models 
at various levels of detail that account for an impressive percent- 
age of error-free, expert behavior. These models are useful in 
that they serve as a well-defined end point for skill acquisition in 
text editing. In particular, their research largely solved the skill 
representation problem which is always a thorny issue in at- 
tempts to provide theoretical analyses of transfer. All predic-



Lateral Transfer 69 

tions about transfer turn critically on the representation chosen 
for the skill. To avoid the danger of circularity, it is preferable to 
have the representation decided on grounds other than the 
transfer data at hand. Card, Moran & Newell’s GOMS model 

provides that representation independently for us. 
The GOMS model supplies us with a representation of text- 

editing skill that can be used to identify the elements common to 
different editors. More specifically, the model provides us with 
the abstract goal structures which underlie and organize the 
production of keystrokes in the editors. Our predictions of 
transfer between the editors hinge on the fact that, even though 
the specific commands used to accomplish edits in the various 
systems may be different, the underlying goal structures are 
largely the same and provide the basis for positive transfer. 

While their GOMS model is not an ACT* production system 
model, it is easily converted into one. A major assumption in 
our work is that single production rules are the units of cogni- 
tive skill, the elements that Thorndike was searching for. What 
we are proposing is essentially a modern version of the theory of 
identical elements based on productions rather than stimulus- 
response bonds. Unlike Thorndike’s superficial elements, pro- 
ductions are versatile and powerful computational entities. It is 
widely known that production systems have the computational 
power of Turing machines. Productions are abstract and can be 
used to represent many different problem-solving methods at 
various levels of generality. Productions are often used to rep- 
resent cognitive processes which have no direct impact on the 
external world yet nonetheless play an important role in skilled 
behavior, like planning and problem decomposition (or subgoal- 
ing). Therefore, not only external but also internal ‘actions’ are 
considered in calculations of transfer. In our models, all the 
components of text-editing skill identified by Card et al. (goal 
structures, methods, operators, decision rules, and sequences of 

user actions) are represented as productions. 

The experiment reported here involved teaching groups of 
computer-naive subjects one or two line editors and then a 
screen editor. Three questions were of particular interest: 

1. Magnitude of Transfer among Different Editors. Would transfer 
be positive, negative, or nonexistent? How would transfer 
among the line editors compare with transfer from the line 
editors to the screen editor? A production system analysis of the 
structural similarity of the editors suggested that, whereas the 
line editors were quite similar, the line editors and the screen



70 The Transfer of Cognitive Skill 

editor shared few features. Perhaps the magnitudes of transfer 
would reflect this difference. 

2. Identification of Learning and Transfer Components. Could 
transfer effects be localized to particular subskills and pieces of 
knowledge? What would be the nature of these components? 
These questions are crucial to the development of the identical 
productions theory of transfer. 

3. Advantage of Learning Two Line Editors Instead of One. We 
thought subjects might show greater transfer to a screen editor 
after having learned two line editors rather than one. This spec- 
ulation was founded on the belief that those who learned two 
line editors would have a more generalized skill that would 
apply more broadly to a new editor (Anderson, 1982). This 
prediction is somewhat dated. As noted in the review of ACT”, 

such a generalization process no longer exists in the theory. 

Method 

Subjects 

Subjects were 24 women between the ages of 18 and 30 from a 
local secretarial school. None of the subjects had any computer 
experience, but all could type proficiently. Subjects were bal- 
anced across various conditions of the experiment for typing 
speed (M = 41 wpm) and performance on a standardized 
cognitive test of spatial memory, the building memory test 
(Ekstrom, French, and Harman, 1976). This test was found to be 

a fair predictor (r = — .58) of initial performance on a text editor 
(Gomez, Egan, and Bowers, 1986). 

Materials 

Subjects learned from a set of three commercially available text 
editors. Two of these editors, UNIX ED (Kernighan, 1980) and 
VMS EDT (Digital Equipment Corporation, 1982) belong to the 
genre known as line editors, whereas the third editor, UNIX 
EMACS (Gosling, 1981), belongs to the genre known as screen 
editors. Line editors differ from screen editors in basic editing 
strategy. Line editors display the contents of the file only upon 
request and force users to enter abstract commands that specify 
edits on a line-by-line basis. Screen editors, however, fill the 

screen with the contents of the file and allow users to edit the 
contents explicitly by moving to a particular location by means 
of a cursor. Screen editors are generally seen as a significant



Lateral Transfer 71 

advance over the older line editors and in fact have been found 
superior on measures of learnability and expert performance 
(Roberts, 1979; Gomez, Egan, Wheeler, Sharma, and Gruchacz, 
1983). 

Subjects were taught a minimum core set of commands for 
each editor. These commands were totally sufficient for the 
kinds of edits our subjects had to perform. In the line editors 
(ED and EDT), the core set included commands for: 

1. Printing, deleting, inserting, and replacing lines. 
2. Substituting strings within lines (the substitution com- 

mand also provided for string insertion and deletion). 

In the screen editor (EMACS), the core set included com- 
mands for: 

1. Moving the cursor forward, backward, and up and down. 

2. Deleting characters, words, and strings. 

Of course, the character of the commands differed markedly 
between the line editors and the screen editors. The majority of 
EMACS commands pertained to moving the cursor and involved 
special terminal keys. In all editors, subjects were spared from 
learning the procedures for reading and writing files and were 
instead fed files automatically by experimental software. Table 
3.1 lists the core set of commands for each of the editors. 

Subjects edited sections of a book on cognitive psychology 
that resided on a local computer system. The book was sec- 
tioned into 18-line files, and each file was randomly mutilated 
by a text mutilation program. The program performed six of 12 
possible mutilations on each file. The 12 mutilations were de- 
fined by crossing the editing operations insert, delete, and re- 
place by the data objects character, word, string, and line. It 

took two files to cover all 12 mutilations; the same mutilations 

occurred on every other screen. Each file constituted a single 
trial. 

The subjects’ task was to correct the errors introduced by the 
mutilation program. They worked from a marked-up copy of the 
files placed in a loose-leaf binder. Figure 3.1 shows a sample 
page of the binder, which sat flat on the table just beside the 
terminal. Each page corresponded to a single file. 

Design 

The study used a 2 X 2 between-subjects design with two 
control groups. The first factor was number of line editors



  

  

72 The Transfer of Cognitive Skill 

Table 3.1. Command summary for three editors: * denotes a control 
character and | denotes an escape character. 

Command 
type Editor Command _ Action 

Locative ED 1,$p Prints all lines of the file 

3p Prints the third line 

.p Prints the current line 

= Prints the line number of the current line 

CR Prints the line following the current line 

EDT t whole Prints all lines of the file 

t ‘dog’ Prints the first line following the current line 
that contains ‘dog’ 

t—‘dog’ Prints the first line before the current line that 
contains ‘dog’ 

t Prints the current line 

CR Prints the line following the current line 

EMACS _ ‘f Moves cursor forward one character 

Jf Moves cursor forward one word 

*b Moves cursor backward one character 

]b Moves cursor backward one word 

‘a Moves cursor to beginning of line 

‘e Moves cursor to end of line 

*p Moves cursor to previous line 

‘n Moves cursor to next line 

Mutative ED a Inserts lines after the current line 
(type ‘.’ to exit the insert mode) 

.d Deletes the current line 

.C Replaces the current line 
(type ‘.’ to exit the insert mode) 

s/a/b/p Substitutes the first occurrence of ‘a’ with ‘b’ 
on the current line 

EDT i Inserts lines after the current line 
(type “z to exit the insert mode) 

d Deletes the current line 

r Replaces the current line 
(type *z to exit the insert mode) 

s/a/b Substitutes the first occurrence of ‘a’ with ‘b’ 
on the current line 

EMACS ‘d Deletes the character marked by the cursor 

Jd Deletes the word marked by the cursor 

DEL Deletes the character to the left of the cursor 

*k Deletes from the current cursor position to 
the end of the line 

a Inserts the character ‘a’ at the current cursor 
position (EMACS is in insert mode by 
default) 
 



Lateral Transfer 73 

Not only will the unit nodes in these traces 

accrue strength with days of practice, but also 

the element nodes will accrue strength. As will 

be seen, this power function prediction 

corresponds to the data about practice. A set of 

experiments was conducted to test the prediction 
thé 

about a power-law increase in‘strength with 

extensive practice. In one experiment subjects 

studied subject-verb-object sentences of the form 

(Thge lawyer hated the doctor). After studying 
4 these séntences they were transferred toa 

sentence recognition paradigm in which they had to 

discriminate these sentences from foil bythe-minre 

target 
sentences made of the same words as thé é#uetrates= 

sentence but in new combinations. There were 25 days of 

tests and hence practice. Each day subjects were tested 

on each sentence 12 times (in one group) or 24 

times in the other group. There was no difference 

Figure 3.1. Sample page of corrections. 

learned (one vs. two), and the second was initial line editor (ED 
vs. EDT). The two control groups learned no line editors; their 
first exposure to text editing was EMACS. One of the control 
groups spent the entire experiment editing with EMACS (this 
control would reveal whether transfer to EMACS from the line 
editors was positive or negative). The other control group prac- 
ticed typing at the terminal prior to editing with EMACS. This 
group typed for the amount of time the experimental groups 
spent learning the line editors (this control would reveal the 
perceptual-motor component of transfer). 

Procedure 

Several days prior to the experiment, subjects were pretested on 
the Building Memory Test and assigned to conditions based on 
this score and also typing speed. On this same days, subjects 
received a brief orientation to computing and the computer 
terminal. No explicit instruction on text editing was given.



74 The Transfer of Cognitive Skill 

The experiment itself consisted of six consecutive days of text 
editing. Each day consisted of a three-hour session interrupted 
by two ten-minute breaks after the first and second hours. Sub- 
jects were run in pairs in a quiet experimental room. 

On the first day of the experiment, all subjects except those in 
the typing control condition were given a brief introduction to 
the set of commands they would be using that day. This intro- 
duction consisted of a brief description of each command fol- 
lowed by a demonstration on the terminal. This introduction 
lasted approximately 30 minutes. 

The subjects than began editing at the terminals. An experi- 
menter was present in the room at all times to answer any 
questions or help with particularly difficult problems. Experi- 
menters were told not to intervene unless a subject asked for 

help. A single tutor was designated for each editor, so that all 
subjects’ experiences with a single editor would be similar. As 

experimenter was totally confounded with editor in the experi- 
ment, the results should not be regarded as a totally valid com- 
parison of the editors. 

The subjects spent the first two days practicing their first 
editor. On the third day, those subjects in the two-line-editor 
conditions switched to their second editor (either ED or EDT), 
whereas the other subjects remained on their first. All subjects, 
however, received a second introduction to the set of commands 
they would be using (which constituted a review for the subjects 
who did not switch). In this way, the amount of formal instruc- 
tion received by subjects was constant across conditions. 

On the fifth day of the experiment, all experimental subjects 
and the typing control group transferred to EMACS. After re- 
ceiving formal instruction on the commands, these subjects 
spent the last two days practicing EMACS. The EMACS control 
group spent all six days learning EMACS. They received formal 
instruction on the first, third, and fifth days. 

Those subjects in the typing control group spent the first four 
days typing the manuscript that the experimental groups were 
editing. In addition to incorporating all the corrections marked 
on the manuscript, subjects had to correct typing mistakes as 
they were made. This rule was enforced by a program that 
checked the stream of keystrokes against a target file and deac- 
tivated the keyboard once a difference was detected. Subjects 
could reactivate the keyboard only by pressing the delete key, 
which erased the mistake. This practice resulted in a level of 
frustration similar to that experienced by subjects in the exper- 
imental conditions. In sum, the typing control had experience



Lateral Transfer 79 

reading the manuscript, interpreting the edits, and interacting 
through the terminal. 

Keystroke data accurate to within one second were collected 
for all subjects. In addition, the edited versions of the mutilated 

files were saved to allow for error checking. 

Macroanalysis of Learning and Transfer 

There are two major levels of data analysis. One level describes 
subjects’ performance in terms of gross measures, such as time 

per edit and keystrokes per trial. This macrolevel of analysis gives 
us a general understanding of what is happening and encourages 
us to explore certain phenomena further. The other level of 
analysis is a detailed examination of the keystroke data, designed 
to localize the components of learning and transfer intimated at 
the coarser level. This microlevel of analysis provides the most 
rigorous test of the identical productions theory of transfer. 

The macroanalysis has three parts. The first presents learning 
data for the three editors. The second analyzes transfer between 
the line editors, and the third analyzes transfer from the line 

editors to the screen editor. 

Learning in three editors 

Figure 3.2 shows learning curves for the three editors used in 
the experiment. The curves were derived from the two experi- 
mental groups that spent four days on a single line editor and 
the control group that spent six days on EMACS (only the first 
four days are presented here). The results are expressed in 
terms of a measure that approximates the number of seconds 
spent per correct editing operation. The measure was calculated 
by first adjusting the total time on a trial (t) by incrementing the 
time by one-sixth for every error (e) committed: 

(3.1) tag; = t + (e/6) x t 

This adjusted total was then divided by six to arrive at time per 
correct editing operation (similar results are obtained just using 
raw time). Errors were defined as mismatches in character se- 

quences between the subject’s edited file and the target file. 
Errors were scored in an all-or-none fashion, with a maximum of 

six errors per trial. 
The learning curves show that, on all four days, EDT is the



76 The Transfer of Cognitive Skill: 

    

250r 

Oo ED 
o EDT 

200 F 4 EMACS 

Cc 

2 

9 
O S I5OF 

O 
2 
3S 
O 
~ 

3 !00F 
Cc 
° 
O 
@® 

v”) 

50F- 

1 | l i J 

O | 2 3 4 5 

Day 

Figure 3.2. Learning curves plotting seconds per correct edit for three editors. 

slowest editor and EMACS is the fastest. Also, EMACS appears 
to be leveling off at a much lower asymptote than the two line 
editors (an advantage of approximately 20 seconds per edit, or 2 
minutes per trial). A two-way repeated measures analysis of 
variance yielded main effects for editor (F(2,9) = 8.6, p< .01), day 
(F(3, 27) = 23.4, p < .01), and also an interaction (F(6,27) = 3.0, 
p< .05). The interaction implies that the editors are being learned 
at different rates. Subsequent Newman-Keuls muitiple range 
tests revealed that, across days, EDT was significantly slower 
than both ED (F(9) = 3.68, p < .05) and EMACS (F(9) = 5.8, p< 
.05). The ED-EMACS difference was nonsignificant (F(9) = 2.13). 

The reasons for the advantage of a screen editor such as 
EMACS over line editors such as ED and EDT have been dis- 
cussed elsewhere (Roberts, 1979; Gomez et al., 1983). A popular



Lateral Transfer 77 

view is that screen editors off-load spatial memory by providing 
a static display of text and a method of addressing characters by 
cursor position. More generally, differences among editors have 
been ascribed to differences in the number of keystrokes required 
to perform edits (Card et al., 1983). Subjects did edit in EMACS 

using significantly fewer keystrokes than in the line editors. 
Having generated possible reasons for the EMACS advantage, 

how do we explain the apparent superiority of ED over EDT? In 
our experiment, the difference between these line editors is most 

likely due to different procedures for locating lines. Specifically, 
lines are addressed by line number in ED and by content in EDT 
(in fact, both line addressing methods are available in both edi- 
tors, but we chose to teach only one in each). So, to locate line 12 
in ED, one merely types 12p; whereas in EDT, one types t ‘string’, 
where string is some sequence of characters unique to line 12. In 
most cases, the latter method involves not only more keystrokes 
but also more mental preparation time, especially in novices. This 
may explain the observed differences in both initial and asymp- 
totic performance in the two line editors. Further analysis of the 
keystroke data should be instructive on this point. 

In a complex skill such as text editing, the exact shape of the 
learning curves is most likely determined by a variety of inter- 
acting factors. Two of these factors might be fewer episodes 
involving error recovery and the acquisition of more efficient 
editing strategies. Both of these factors would not only combine 
to reduce total time but also reduce the total number of key- 
strokes. Figure 3.3 plots the average number of keystrokes per 
trial for the three editors on each day. A two-way analysis of 
variance yielded main effects for editor (F(2,9) = 8.7, p < .01) 

and day (F(3,27) = 4.9, p < .01). The pattern of keystroke data 
mirrors almost exactly the pattern of timing data presented in 
Figure 3.2. Such a correspondence suggests that, in learning as 
well as in expert performance (Card et al., 1983), the number of 

keystrokes correlates highly with total time. 
Can the decrease in the number of keystrokes account for all 

the learning that is taking place? If the decrease in the number 
of keystrokes is solely responsible for the shape of the learning 
curves, then seconds per keystroke should be constant across 
days. Figure 3.4 shows that seconds per keystroke decreased 
markedly across days, suggesting that subjects were either be- 
coming faster typists or spending less time thinking and plan- 
ning. Given the magnitude of the effect and the fact that subjects 
were already skilled typists, the latter hypothesis seems more 
plausible. An analysis of variance for this data revealed that



78 The Transfer of Cognitive Skill 

    

500 r 

0 ED 
o EDT 

400b+ 4 EMACS 

S 3004 
}— 

~ 

” 

@ 
x 

° 

2 200 
@ 

x 

lOOF 

l ] i 1 a | 

O | 2 3 4 5 

Day 

Figure 3.3. Learning curves plotting number of keystrokes per trial for three editors. 

seconds per keystroke did not differ significantly among the 
editors. Thus, the difference among editors appears to be a 
function of the complexity of the editing operations, which is 
reflected in the different number of keystrokes required to suc- 
cessfully execute commands. Speedup, however, is due to a 
decrease in both number of keystrokes and time per keystroke 
(for a similar pattern of results in a geometry theorem-proving 
task, see Neves and Anderson, 1981). 

Transfer between line editors 

Transfer between line editors is measured in both directions: 

from EDT to ED and from ED to EDT. Figure 3.5 shows the 
massive amount of transfer from EDT to ED. Two of the curves



Lateral Transfer 79 

  
  

3r 

oO ED 

o EDT 

4& EMACS 

o ¢f 
ox 

oO 
‘tne 

Oo 
a“ 

@ 
x 
NN 
” 

Oo 
c 
Oo 

oO 
@ 
Y) 

IF 

1 l l l j 

O | 2 3 4 5 

Day 

Figure 3.4. Learning curves plotting seconds per keystroke for three editors. 

compare data for subjects who spent four days learning ED (ED 
practice curve) with those who spent two days learning EDT 
and then two days learning ED (transfer from EDT to ED). 
Exposure to EDT prior to ED results in a substantial improve- 
ment in performance on day 1 of ED, a savings of approximately 
70 seconds per edit (7 minutes per trial). Indeed, it appears that 
the transfer subjects’ performance on days 1 and 2 is nearly 
equivalent to the practice curve points for days 3 and 4. This 
means that those subjects who spent the first two days learning 
EDT are performing just as well on days 3 and 4 as those sub- 
jects who spent the first two days learning ED, a case of near 
total transfer. 

Figure 3.5 also shows the transfer from ED to EDT. The re- 
maining two curves compare data for subjects who spent four



80 The Transfer of Cognitive Skill 

    

220r 

200 O ED practice curve 

O Transfer from EDT to ED 
4& EDT practice curve 

@ Transfer from ED to EDT 
(I80F 5 

S 160} 
° 
a ° 140F 

O 
2 
ho 120 — 

oO s 
©O 
~N 

4 '!00F 
Cc 
Oo 
© r\ 

gy 80Fr 

GOP ) WoO 

Se . 
40F 5 

1 1. l j a | 

2065 | 2 3 4 5 

Day 

Figure 3.5. Transfer between the line editors in terms of seconds per correct operation 
(days 1-2 of the transfer curves represent performance on the training editor, and days 3-4 

performance on the transfer editor). 

days learning EDT (EDT practice curve) with those who spent 
two days learning ED and then two days learning EDT (transfer 
from ED to EDT). The savings on the first day are even greater 
than in the previous case (150 vs. 70 seconds per edit). Once 
again, the data from days 1 and 2 of the transfer group align 
fairly well with the data from days 3 and 4 of the practice group, 
indicating near total transfer. 

To characterize further the positive transfer between the line 
editors, we compared the number of keystrokes per trial for the 
various training and transfer conditions. These comparisons 
were based on data from the first and second days of editing 
with a particular line editor (thus, the data is from the third and



Lateral Transfer 81 

fourth days of the experiment for the transfer subjects). Al- 
though the transfer groups saved an average of 38 and 118 
keystrokes on ED and EDT respectively across days, neither 
result yielded a significant main effect. 

Although the difference in total keystrokes was nonsignifi- 
cant, analyses of variance using seconds per keystroke as the 
dependent measure showed that transfer subjects were keying 
at a higher rate than the practice subjects in both ED (F(1,6) = 
10.3, p < .05) and EDT (F(1,6)=13.8, p < .01). On average, 
transfer subjects were spending less than half the time (1.1 vs. 
2.3 seconds) per keystroke on day 1 than practice subjects. Once 
again, this savings is almost certainly due to a decrease in men- 
tal preparation time rather than an increase in keying rate. 

Transfer from line editors to EMACS 

Figure 3.6 shows the transfer from the line editors to EMACS. 
Curves are plotted for control subjects who saw nothing but 
EMACS (EMACS practice curve), control subjects who typed at 
the terminal for four days prior to EMACS (transfer from typing), 
experimental subjects who learned one line editor, and experi- 
mental subjects who learned two line editors (different orderings 
of the editors were collapsed in the two-editor condition). The 
most noticeable result is that, on the whole, those subjects who 
had four days of prior line-editing experience showed substantial 
transfer on the first day of EMACS (a savings of approximately 35 
seconds per edit). On average, however, this is less than half the 
amount of transfer observed among the line editors. 

A two-way analysis of variance yielded a main effect for ex- 
perience prior to transfer (F(3,20) = 5.8, p < .01). As expected, 
subsequent Newman-Keuls tests revealed significant differences 
between the group that had no prior experience (EMACS prac- 
tice curve) and the groups that had prior line-editing experience 
(one line editor, F(20) = 5.25, p < .01; two line editors, F(20) = 

9.74, p < .01). No other differences were significant, including 
the difference between the typing and EMACS control groups. 

Examining the data in finer detail, we see that the prediction 
concerning the advantage of two line editors over one is sup- 
ported to only a modest degree. Those who learned two line 
editors had an advantage of about 2 seconds per edit (12 seconds 
per trial) on both the first and second days. However, this 
difference was not significant. 

Figure 3.7 shows that, compared with the control groups who 
had had no prior line-editing experience, the experimental



82 The Transfer of Cognitive Skill 

    

lOOr 

90F & EMACS practice curve 
@ Transfer from typing 
O Transfer fromone line editor 

80F © Transfer from two line editors 

S 70F 
rs) 

me 

o o 60F 

O 
® 

= 50F 
oO 
© 
™~ 

2 4ot 
c 
° 

© 
wm 30F 

2OFr 

lOF 

0 | 2 3 4 5 6 7 

Day 

Figure 3.6. Transfer to EMACS in terms of seconds per correct edit (transfer curves are 

plotted to facilitate comparisons of performance on day 1 of EMACS). 

groups made substantially fewer keystrokes per trial on the first 
day of EMACS (a difference of approximately 30 keystrokes). A 
two-way repeated measures analysis of variance produced a 
significant interaction between prior experience and days 
(F(3,20) = 3.83, p < .05). Newman-Keuls tests yielded signifi- 

cant differences for all four comparisons between the control 

groups and the experiment groups on day 1 (all F(20) > 3.4, p< 

.05). There were no significant differences between groups on 

the second day of transfer. 
In addition to fewer total keystrokes, the experimental subjects 

were keying at a higher rate than the control subjects (1.2 vs. 1.5 
keystrokes per second). Figure 3.8 presents the pattern of results. 
An analysis of variance of the keying rates yielded a significant



Lateral Transfer 83 

  
  

210 r 

200+ 4 EMACS practice curve 
@ Transfer from typing 
Q_ Transfer from one line editor 

Oo Transfer from two line editors 
ISOF 

ISOFr 

oS 
E 170 

” 

@ 
x 
Oo 
= I60F 

Ww 
~ 
@ 
< 

150r 

I40Fr 

I30OF 

120 i ] ] j i i J 

O | 2 3 4 5 6 7 

Day 

Figure 3.7. Transfer to EMACS in terms of number of keystrokes per trial. 

interaction between experience prior to EMACS and day of trans- 
fer (F(3,20) = 4.83, p < .01). Subsequent Newman-Keuls tests 
revealed that on the first day of transfer, the two experimental 
groups were indeed keying significantly faster than the EMACS 
control group (both F(20) > 4.7, p< .05) but not the typing control 
group. As in the earlier keystroke analysis, there were no signif- 
icant differences on the second day of transfer. 

Summary of macroanalysis 

At present our results are expressed in terms of rather global 
measures. However, the basic outlines of the phenomena of 
learning and transfer are beginning to emerge. So far, we have 
observed:



84. The Transfer of Cognitive Skill 

    

3 — 

4 EMACS practice curve 
@ Transfer from typing 
© Transfer from one line editor 

© Transfer from two line editors 

@ 27 
=x 

oO 
= 
” 

_ 

@ 

< 
™~ 

w” 

;O 
Cc 

Oo 
Oo 
@ 
Y) 

| = 

| l 1 l ] ] __J 

O | 2 3 4 5 7 

Day 

Figure 3.8. Transfer to EMACS in terms of seconds per keystroke. 

1. Consistent rank ordering of the editors in terms of learn- 

ability and ease of use, with EMACS being the easiest and ED 

the hardest. | 

2. Near total transfer between the two line editors. For exam- 

ple, two days of practice on ED were nearly as good as two days 

of practice on EDT in terms of preparation for further editing 

with EDT. 
3. Moderate amount of transfer from the line editors to the 

screen editor. 

4. Slight transfer from the typing control condition to the 

screen editor. 
5. No sign of negative transfer. All transfer at the macrolevel 

was overwhelmingly positive.



Lateral Transfer 85 

Learning and transfer manifested themselves in a number of 
ways, including: 

1. Reduction in total time 
2. Reduction in total keystrokes 
3. Increase in keying rate 

Our results so far seem to be consistent with some type of 
common elements theory of transfer. However, if productions 
are the elements, as we claim, our measures to date have been 

too coarse to identify specific transfer sites. Although in practi- 
cal terms it is impossible to identify the firing of individual 
productions in this data, we can provide firmer support for our 
common elements theory by doing analyses at a finer grain size. 
Our task at this point is to perform an in-depth analysis of the 
keystroke data to localize the learning and transfer effects. 

Microanalysis of Learning and Transfer 

The goal of the microanalysis is to isolate and independently 
measure the acquisition and transfer of the various elements of 
text-editing skill. To do this, we need some theory of perfor- 
mance in text editing to identify the theoretically significant 
components. We use the extensive task analysis of text editing 
that already exists in the work of Card et al. (1983). According to 
their GOMS formulation, text editing consists of a series of 
largely independent unit tasks, each of which is accomplished 
through the satisfaction of three subgoals as shown in Figure 
3.9: encode the edit from the manuscript (acquire unit task), 
move to the line requiring modification (locate line), and modify 
the text (modify text). These three subgoals are instances of 
goals, one of the four components of skill in the GOMS model. 
The other components are operators, methods, and selection 
rules. 

We set as an initial goal of the microanalysis to trace the 
acquisition and transfer of the various unit tasks of text editing 
and their major subgoals: acquire unit task, locate line (LL), and 

modify text (MT). We do this by taking a detailed look at the 
stream of keystrokes executed by subjects over the course of the 
experiment. The keystroke data can be viewed as a series of 
keystroke bursts separated by pauses. These bursts and pauses 
have psychological significance in that the pauses represent the 
mental preparation time for an operation, and the bursts its 
execution. Presumably, as a person becomes more skillful at text 
editing, the frequency and duration of the bursts and pauses



86 The Transfer of Cognitive Skill 

Edit manuscript 

  
Edit unit task 

4 \ 
Acquire unit task Execute unit task 

[more subgoals Locate line Modify text 
and leaves| | \ 

[more subgoals [more subgoals 

and leaves] and leaves] 

L IL _| 
LL component MT component 

Figure 3.9. Top-level goal structure of text editing. 

change, reflecting the acquisition and compilation of the various 
components of text-editing knowledge. 

Keystroke parsing 

In order to make sense of the nearly 500,000 keystrokes collected 
in this experiment, we developed a keystroke parsing algorithm 
that was instantiated in several data analysis programs (see 
Singley and Anderson, 1988). The goal of the parsing algorithm 
is to identify each burst and pause in the keystroke data and 
attribute it to the planning or execution of some text-editing 
operation. The general strategy is to simulate the editors by 
parsing commands and updating the contents of the file while 
collecting statistics on each interaction. 

The parsing algorithm first segments the keystroke data from 
a single trial into six unit task episodes corresponding to the six 
edits on the page. The algorithm further subdivides these six 
segments into their LL and MT components. The LL component 
includes not only the time and keystrokes spent moving to the



Lateral Transfer 87 

site of the modification but also the time spent acquiring the unit 

task from the manuscript (see Figure 3.9). The MT component is 

composed simply of the time and keystrokes spent modifying 

the text. Finally, these two components are split into planning 

and execution subcomponents. Operationally, we defined the 

execution subcomponent as the time from the first to last key- 

stroke minus any interkeystroke pauses of greater than 2 sec- 

onds. Likewise, we defined the planning component to be the 

sum of all pauses of greater than 2 seconds. Typically, an LL or 

MT component begins with a long pause followed by keystroke 
bursts separated by short pauses. 

Critical to the success of the parsing algorithm is that subjects 

move in an orderly fashion from unit task to unit task in the 

manuscript. Although the parser has certain methods for deal- 

ing with backtracking and skipped goals, in many cases the 

parser simply refuses to attribute pauses and keystrokes that fall 

outside of its expectations. 
Table 3.2 shows one measure of the success of our parsing 

algorithm, the percentage of total time attributed to the satisfac- 

tion of goals. Generally, parsing efficiency ranges between 85 

and 95 percent in the learning and transfer data in all three 

editors, but interesting subpatterns do exist. First, there is a 

learning effect in that parsing efficiency is lowest on day 1 and 

rises on days 2 and 3. The slight dip on day 4 is due to the 
unusually poor performance of the EDT subjects; the other ed- 

itors seem to have reached asymptotic levels. Second, there is a 

Table 3.2. Parsing efficiency: percentage of time attributed to the 
satisfaction of goals by the parsing algorithm. 
  

  

  

Day 

Editor 1 2 3 4 M 

Learning conditions 
EMACS 94 94 95 95 95 

ED 82 89 92 92 89 

EDT 78 90 93 86 87 

M 85 91 93 91 90 

Transfer conditions 

EMACS 93 95 — — 94 

ED 94 91 — — 93 

EDT 96 94 — — 95 

M 94 93 — — 94 
 



88 The Transfer of Cognitive Skill 

transfer effect in that the transfer percentages are generally 
higher than the learning percentages. Finally, parsing efficiency 
is highest for EMACS and lowest for EDT, which is consistent 
with earlier results concerning learnability and ease of use. 

The general sensibility of these results points to the fact that, 
apart from the more substantive output of the parsing analysis, 
parsing efficiency is an interesting and valid dependent measure 
in itself. Indeed, the parsing algorithm embodies a simple model 
of text-editing behavior. Adherence to the algorithm is in some 
sense a measure of a subject’s goal directedness and rationality. 
Subjects’ behavior seems to become more rule-governed with 
experience, as Robertson (1984) speculated. 

The primary yield from the parsing analysis is a set of learning 
and transfer curves for the 12 subgoals corresponding to the 12 
kinds of modifications in the editing task. Each of these curves 
is further subdivided into its LL and MT components, which are 
in turn split into planning and execution components. Given 
such a multilevel analysis, it should be possible to localize the 
learning and transfer effects observed at the macrolevel. As we 
describe these microresults, we move from the coarser to the 
finer levels of analysis. We start with three learning analyses 
and conclude with two transfer analyses. 

Planning time versus execution time in learning 

In this first analysis, we collapse across LL, MT, and the 12 
subgoals and simply split total time per edit into its planning 
and execution components. One of the first discoveries is that, 
apart from minor differences, all learning curves decomposed in 
this way have a characteristic shape, regardless of editor. Figure 
3.10 shows this characteristic shape, averaged across the various 
methods in all three editors. The two curves plotted are total 
time per edit and execution time per edit; planning time is 
merely the difference of these two. 

Most striking is the fact that, whereas total time per edit drops 
from 48 seconds on day 1 to 16 seconds on day 4 (a 3-to-1 
decrease), the execution time curve is relatively flat. Apparently, 
most of what a subject learns manifests itself as a reduction in 
planning time. Also, as we shall see shortly, the slight decrease 
in execution time can be attributed totally to a decrease in key- 
strokes rather than an increase in keying rate. 

The ratio of planning time drops from 3.0 on day 1 to 1.2 on 
day 4. This means that subjects spend about 75 percent of their 
time planning on day 1 and 54 percent on day 4. This 54 percent



Lateral Transfer 89 

90 

80Fr 
O Total time 

O Execution time 

TOF 

60F 

SOF 

S
e
c
o
n
d
s
 

40+ 

30 q 

  
Day 

Figure 3.10. Aggregate subgoal learning curve broken down into planning and execution 

components (planning time is the difference between total time and execution time). 

figure compares favorably with the results of Card et al. (1983), 
who reported that the seasoned experts in their studies spend 
about 60 percent of their time planning. Our number is some- 
what lower because a full third of the subjects used in our 
analysis were editing with EMACS, which requires substantially 
less planning time per keystroke than the line editors used here 
and also those in Card et al. (1983). Specifically, the ratio of 
planning time to execution time on day 4 for our EMACS sub- 
jects was .9, which is well below the line editor average of 1.3. 

Learning in LL and MT 

This analysis again collapses across the 12 subgoals but parti- 
tions the keystroke data into two additional components: LL



90 The Transfer of Cognitive Skill 

and MT. Although the dramatic reductions occur in planning 
time, modest reductions occur in execution time as well. The 

number of keystrokes per edit also decreases over the course 
of the experiment. The question naturally arises as to whether 
the reduction in execution time is due solely to the reduction 
in number of keystrokes. Table 3.3 presents in the first row 
correlation data that establishes the connection between exe- 
cution time and keystrokes in each of the editors. Separate 
data points were entered for each of the twelve subgoals on 
four days of learning, making a total of 48 data points per 
correlation (for this analysis, data was averaged across sub- 
jects). The correlations are remarkably high (an average of 
.96), giving strong evidence for an airtight linkage between 
these two variables. This lawful pattern of results attests to the 
soundness of our original decision to regard pauses of greater 
than 2 seconds as a part of planning time. The fact that exe- 
cution time can be computed by multiplying the number of 
keystrokes by typing speed indicates that our parsing proce- 
dure successfully segmented the planning and execution sub- 
components. 

To remove any doubt whatsoever concerning the exclusive 
relationship between reductions in execution time and key- 
strokes, we considered a plausible alternative hypothesis: that 
subjects were becoming better typists and were keying faster 
over the course of the experiment. To test this hypothesis, we 
performed six multiple trials ANOVAs for the LL and MT 
components of the three editors, using execution time per key- 
stroke as the measure of keying rate. As expected, none pro- 
duced a significant main effect for days, which meant that 

subjects were keying at the same rate throughout the experi- 

Table 3.3. Correlation of dependent measures in the three editors. 
  

  

  

Editor 

Correlation Component EMACS ED EDT 

Execution time LL 97 .86 .98 
vs. keystrokes 

MT .99 .97 .98 

Planning time LL 46 .83 73 
vs. keystrokes 

MT 9 72 .65 
 



Lateral Transfer 91 

ment, a sensible result given that they were already skilled 
typists. Subjects averaged .47 seconds per keystroke, or ap- 
proximately 2 keystrokes per second; there were no significant 
differences between editors. We conclude, then, that the 

speedup observed in the execution subcomponent is solely a 
result of subjects’ using fewer keystrokes to perform edits and 
not a result of faster typing. 

Having isolated the source of speedup in execution time, we 
must now consider what causes subjects to use fewer key- 
strokes. There are at least two possibilities. First, subjects’ meth- 
ods may be becoming more efficient because of either the 
acquisition of new operators or the more judicious use of exist- 
ing operators. Second, subjects may be making fewer errors, 
requiring fewer corrections. Fortunately, we can discriminate 
between these two possibilities with two new dependent mea- 
sures. If subjects are acquiring more efficient methods, the num- 
bers of keystrokes per command should decline over the course 
of the experiment. Likewise, if subjects are executing fewer 
errorful commands, requiring fewer resubmissions, the number 

of commands per edit should decline. 
Table 3.4 shows the results of 12 multiple trials ANOVAs 

performed on the two dependent measures for the MT and LL 
components of the three editors. Five of the six commands per 
edit ANOVAs yielded a main effect for days, but only one of 
the six keystrokes per command ANOVAs did. This pattern of 
results strongly suggests that most of the reduction in key- 
strokes is due to fewer error episodes and not to more efficient 

methods. 

Table 3.4. Summary of ANOVA results for keystrokes per command 
and commands per edit. The @ denotes a significant 
reduction in the marked component over the course of 

the experiment. 
  

  

  

Editor 
Dependent 
measure Component EMACS ED EDT 

Keystrokes LL e 
per command 

MT 

Commands LL e e 

per edit 
MT e e e 
 



92 The Transfer of Cognitive Skill 

Given our success at reducing execution time to number of 
keystrokes, we are tempted to propose that planning time can 
be similarly reduced. If this were possible, a very simple model 
of learning and performance would emerge that associates some 
fixed amount of overhead with each keystroke and explains all 
speedup in terms of reductions in keystrokes. However, the 
results strongly suggest that the estimation of planning time is a 
much more complex undertaking. First, correlations between 
planning time and number of keystrokes are too low. Table 3.3 
shows that, whereas number of keystrokes predicts over 90 
percent of the variance in execution time, it predicts only 40 
percent of the variance in planning time. Of course, since both 
number of keystrokes and planning time are decreasing, we 
would expect some correlation. Second, we performed six 
repeated-measures ANOVAs, using planning time per key- 
stroke as the dependent variable, and found that both MT and 

LL components in all three editors were significantly decreasing 
on this measure (all F(3,9) > 5.0 all p < .05). Also, significant 
main effects and interactions were found for the various unit 
tasks. This is additional evidence that planning time per key- 
stroke is not a constant in the experiment. 

Unit task learning 

So far in this microanalysis we have been concerned primarily 
with the acquisition of four components: LL and MT planning 
and execution. We now increase the complexity of the analysis 
by a factor of 12 by decomposing the LL and MT components 
into their 12 constituent subgoals. These subgoals correspond to 
the 12 kinds of edits found in the manuscript and are derived by 
crossing the editing operations (insert, replace, and delete) by 
the data objects (character, word, string, and line). The purpose 

of this analysis is to gain a better understanding of the micro- 
structure of text editing and therefore set the stage for microanal- 
yses of transfer. 

As it is difficult to grasp separately the independent contribu- 
tions of the dozens of learning components, we propose a sim- 
ple model to summarize the results. This model attempts to 
account for the MT and LL planning and execution times for 9 of 
the 12 subgoals over the course of the experiment, or a total of 
36 components per editor. We have excluded those subgoals 
concerned with manipulating lines (insert line, replace line, and 

delete line) from the analysis for reasons to be discussed shortly. 
The model claims that:



Lateral Transfer 93 

1. All execution times are based solely on the number of 
keystrokes required to perform edits. 

2. LL planning times vary only asa function of days of practice. 
3. MT planning times vary not only as a function of days of 

practice but also as a function of editing operation (insert vs. 
replace vs. delete) and data complexity (character vs. word vs. 
string). 

Our strategy for supporting the model is: 

1. Use correlations to show that execution time is strictly 

dependent on the number of keystrokes. 
2. Use ANOVAs to show that LL planning time decreases 

over days but is independent of subgoal. 
3. Use ANOVAs to show that MT planning time decreases 

over days but also varies as a function of subgoal. The model 
predicts main effects for both editing operation and data com- 
plexity but no interaction. 

As for these three lines of evidence, the first has already been 

established. Table 3.3 presents a series of correlations that dem- 
onstrate the strong link between number of keystrokes and 
execution time. Subsequent analyses confirmed the exclusive 
relationship between these two variables. As for the second line 
of evidence, 3 x 3 repeated measures ANOVAs, using LL plan- 
ning time as the dependent measure, confirmed that in all three 
editors LL planning time varies only as a function of practice (all 
F(3,9) > 12.08, all p < .001) and not as a function of subgoal. 

As for the third line of evidence, that concerning MT planning 
time, the pattern of results is slightly more complicated. Table 
3.5 presents matrices of means for the 9 subgoals in the line 
editors and EMACS. Because of high variability, data from the 
first day of learning are excluded from this analysis. Data were 

Table 3.5. Matrices of planning time means for the line editors and 
for EMACS. 

Line editors EMACS 

Data object Insert Replace Delete M_ Insert Replace Delete M 

  

    

  

Character 11.8 13.0 11.3 12.0 4.2 4.8 2.9 4.0 
Word 16.0 15.1 13.0 14.7 3.2 6.8 44 4.8 
String 21.6 15.7 14.9 17.4 6.2 7.8 4.7 6.2 
M 16.4 14.6 13.1 14.7 4.5 6.5 4.0 5.0 
 



94 The Transfer of Cognitive Skill 

collapsed across the line editors after an ANOVA comparing ED 
and EDT in terms of MT planning time yielded neither a main 
effect nor an interaction for editor. This again confirms the hy- 
pothesis that line editor MT components are virtually identical. 

Table 3.5 shows the gross disparity between line editor and 
EMACS MT planning times, first observed in the LL/MT analy- 
sis. On average, it takes subjects less than half the time to plan 
their modifications in EMACs than in the line editors. Hidden 
within the line editor and EMACS matrices are interesting dif- 
ferences in fine structure as well. As predicted, two 3 x 3 
repeated measures ANOVAs yielded main effects for editing 
operation and data object in both the line editors and EMACS. 
However, the EMACS ANOVA also yielded an interaction, a 

result inconsistent with the predictions of our simple model but 
apparently an anomoly due to an unnaturally low entry for the 
insert word cell. 

Ignoring for a moment the EMACS interaction and focusing 
on just the row and column means, we see that, in both the line 
editors and EMACS, MT planning time increases monotonically 
with data complexity, going from 12 seconds for characters to 
17.4 seconds for strings in the line editors and from 4 seconds for 
characters to 6.2 seconds for strings in EMACS. This result 
suggests that there is an effect of mental load arising from dif- 
ferences in amount of data on the time to plan operations that 
manipulate the data. 

The editing operations have different relative difficulties in the 
line editors and EMACS. Specifically, the operations are ordered 
delete, replace, and insert in the line editors but delete, insert, 

and replace in EMACS. In EMACS, replace operations are not 
primitive but rather consist of a combination of insert and de- 
lete, so naturally replacement requires the most time and key- 
strokes. In fact, a strong prediction is that the number of replace 
keystrokes is simply the sum of insert and delete keystrokes. 
Figure 3.11 shows the EMACS keystroke data that nearly con- 
firms this prediction, although the actual number of replace 
keystrokes (14.4) is somewhat lower than the sum of insert and 
delete keystrokes (15.7). In the line editors, the keystroke dif- 

ference between insert and replace operations is negligible, but 
both operations are substantially higher than delete operations. 
Delete operations require fewer keystrokes because the second 
argument to the substitute command is the null string. 

Line operations are excluded from our simple model because 
they necessarily disrupt the main effects found for editing oper- 
ation and data complexity by introducing a strong interaction.



Lateral Transfer 95 

          

407 

35Fr 

30F 

25r 

” 

@ 
=z 

° 
= 20- —— 
” 

“= 
@ 
x 

I5- — 

lOF _—— 

5¢ c © 2 -|3fe2 o|= | o| =| @ 
e}o2/2 el e/3 

O         

Line editors EMACS 

Figure 3.11. Number of keystrokes for the three editing operations in the line editors and 
EMACS. 

This interaction has two sources. First, in all three editors, the 
predominant method for delete line operations requires just two 
keystrokes (d followed by [CR] in the line editors and *k’k in 
EMACS). Therefore, the delete line operation was much lower in 
both MT planning time and keystrokes than the model predicted. 
Second, insert line operations take more planning time than 
replace line operations in EMACS, which is inconsistent with the 
general pattern. This reversal is most likely due to the difficulty 
subjects had “making space” for the line to be inserted, a problem 
documented by Mack, Lewis, and Carroll (1983). 

LL and MT transfer 

We observed at the macrolevel near total transfer between the 
line editors and moderate transfer from the line editors to 
EMACS. We now ask whether it is possible to localize any of 
these macroeffects to either the LL or the MT component. Be- 
sides shedding light on the sources of transfer, this analysis 
provides our first opportunity to study the intimate relation 
between learning and transfer in text editing. In order to guide



96 The Transfer of Cognitive Skill 

our understanding of the empirical results, we make rough 
predictions based on sketchy descriptions of the underlying 
models. Once the basic outlines of the phenomena are under- 
stood, we compare the observed results with precise quantita- 
tive predictions. 

We now compare the editors in terms of both LL and MT 
components to make our predictions. All three editors use dif- 
ferent methods to locate lines. However, the LL component 
spans not only locate line procedures but also acquire unit task 
procedures and the upper-most nodes of the text-editing goal 
tree (see Figure 3.9). Since traversing the top nodes in the goal 
tree and encoding the edits are the same regardless of editor, we 
would expect moderate and equal degrees of transfer among the 
three editors in the LL component based on these rules. How- 
ever, the line editors share several additional rules pertaining to 
the selection of LL method and also specification of the second- 
ary carriage return method. Therefore, LL transfer between the 

line editors should be somewhat higher than that between the 
line editors and EMACS. 

The degree of similarity in the line editors is even greater in 
the MT component. Although the surface features of the MT 
commands in the two line editors are largely different, their 
underlying conceptual structures are nearly identical. This 
means that the line editor MT procedures share many high-level 
and intermediate-level nodes in their goal trees. For example, to 
insert a line in ED, one moves to the line above the line to be 

inserted and types a for append. In EDT, one moves to the line 
below the line to be inserted and types i for insert. To exit the 
insert mode in ED, one types a period by itself on a line imme- 
diately followed by a carriage return. To exit the insert mode in 
EDT, one presses *z. Although these methods are quite different 
in surface symbols typed, they have the same underlying logical 
structure. This common structure is a likely source of positive 
transfer in the MT component. 

Although line editor MT procedures are quite similar, line 
editor and EMACS MT procedures are largely different. How- 
ever, they do share several rules for generating the top MT nodes 
in the goal tree and for inserting text. Therefore, in the MT 
component we predict nearly total transfer between the line 
editors but substantially less transfer from the line editors to 
EMACS. 

Transfer between Line Editors. Table 3.6 presents line editor 
learning and transfer data for LL and MT planning time. We 
focus on planning time because it is not affected by such factors



Lateral Transfer 97 

Table 3.6. LL/MT planning time transfer. The raw numbers from 
which the transfer score is calculated are second, to plan 
an operation. 
  

    

  

Locate line Modify text 

To To To To 

Transfer condition ED EDT ED EDT 

Between line editors 

Transfer(3) 10.0 17.4 13.1 14.8 
Learning(1) 19.0 44.7 45.9 53.3 

Learning(3) 9.2 13.5 12.8 16.5 

Transfer score 91% 87% 99% 105% 

(equation 3.2) 

From line From From line From 

editors typing editors typing 
    

To EMACS 

Transfer(5) 14.0 19.6 12.9 20.7 
Learning(1) 27.0 27.0 27.6 27.6 
Learning(5) 5.7 5.7 4.0 4.0 

Transfer score 61% 35% 62% 29% 
(equation 3.2) 
  

as typing speed and is therefore our purest measure of higher- 
level cognitive processing. Data are averaged across the first two 
days of learning and transfer for additional reliability. 

To characterize the magnitude of transfer, we use a transfer 

score introduced by Katona (1940) which measures the savings 
on a transfer task relative to a theoretical upper limit derived 
from learning data. This formula has the useful property that it 
is insensitive to the amount of training prior to transfer, since 
the transfer savings (the numerator) is modulated by the degree 
of learning (the denominator). If subjects transfer to a new ed- 
itor on day n of the experiment, the percentage of transfer is 
given by the following equation: 

_ Min(1) en) 

2) Posteering = Mh ,(1) — Mira) 
  x 100 

This is simply transfer equation (1.3). 
The major result in the top half of Table 3.6 is that the MT 

component exhibits more transfer than the LL component, with



98 The Transfer of Cognitive Skill 

means of 102 percent and 89 percent respectively. This is what 
an identical productions models would predict, given that the 
line editor MT procedures have more in common than the LL 
procedures. Although MT transfer is slightly larger, LL transfer 
is still quite substantial. 

Both editors have as a secondary LL method the use of the 
carriage return to move forward one line in the file. It may be 
that a source of positive transfer is this secondary method. To 
test this hypothesis, we characterized the LL methods used in 
the line editors as either primary, that is, line addressing (10p) in 
ED and string searching (¢ ‘unique’) in EDT, or secondary, that is, 
the carriage return method. Figure 3.12 presents the results of 
this analysis. The use of the secondary method is more common 
in the transfer subjects, although a two-way ANOVA confirming 

    

50 6r 

Oo ED 
Oo EDT 

50 F 

o 30Fr 
© 
” 
> 

e 
@® 

2 
aq 20+ 

lOF 

i l ____t 

0 Learning Transfer 

Figure 3.12. Frequency of use of the secondary carriage return method for locating lines 

in the line editors.



Lateral Transfer 99 

the difference was only marginally significant (F(1,12) = 2.1, p< 
.2). It appears, however, that subjects transferring to a new line 
editor rely more on a secondary but familiar procedure for lo- 
cating lines. This result suggests a general rule that, when more 
than one method is available, known methods assume an un- 
naturally prominant role in transfer tasks. 

Another source of LL transfer from ED to EDT lies not in ED’s 
LL component but rather in its MT component. It turns out that 
the specification of unique search strings when locating lines in 
EDT is very similar to the specification of unique replacement 
strings when substituting text in ED. Although these subproce- 
dures run in service of quite different high-level goals, in our 
model the upper nodes rewrite to identical subgoals that involve 
the same subprocedures. In this way, the MT string specifica- 
tion subprocedure in ED can be transferred whole cloth to ser- 
vice an LL goal in EDT. 

Transfer to EMACS. The bottom half of Table 3.6 summarizes 
LL and MT planning time transfer from the line editors and 
typing to EMACS. As with the line editor data, means are av- 
eraged across the first two days of learning and transfer. LL 
transfer from the line editors to EMACS is somewhat smaller 
than that between the line editors themselves, as predicted. The 
additional LL transfer sites in the line editors explain this dif- 
ference. The amount of LL transfer from typing is less than that 
from the line editors, but is still greater than zero. To under- 

stand planning time transfer from typing, recall that subjects in 
the typing control group were required to type the edits that 
were marked on the manuscript. This means that they had 
practice encoding the edits from the manuscript. However, they 
had no exposure to the text-editing goal tree, as they were 
typing continuous text and not locating lines and modifying 
text. This explains the difference in LL transfer between the line 
editor and typing control groups. 

The average MT transfer from the line editors and typing 
control to EMACS is 46 percent, definitely less than the 102 
percent observed between ED and EDT. However, this still 
seems rather high, given that EMACS MT procedures share 
very little with line editor MT procedures, and there is no text 

modification per se in the typing manipulation at all. Here, 
then, is an interesting challenge to the identical elements model. 
Possible sources of transfer include such low-level operations as 
glancing at the manuscript and using the proper keying action 
on control and escape keys, but our data are unable to provide 
support for such claims. An additional candidate is the encode



100 The Transfer of Cognitive Skill 

edit component proposed as a source of LL transfer. Unlike the 
experts observed by Card et al. (1983), our subjects often re- 
quired more than one look at the manuscript to represent edits, 
especially those manipulating strings and lines. Often these 
additional looks occurred after the modification had been lo- 
cated, that is, during the period attributed to MT planning. 
More efficient encoding procedures gained through experience 
with the line editors and the typing manipulation would thus 
contribute to MT transfer. Although this and the other proposed 
sources might contribute to transfer, as a group, they seem 
insufficient to account for the magnitude of transfer observed. 
We therefore suspend any firm conclusions at this time. A better 
understanding of this perplexing result must wait for the results 
of the last and most detailed analysis. 

MT unit task transfer 

The outstanding question concerning transfer from the LL/MT 
analysis involves the source of the rather substantial transfer in 
the MT component from the line editors and typing to EMACS. 
Currently, the candidates include portions of the upper-level 
goal tree (good only for line editor subjects) and subskills for 
encoding the edit from the manuscript (good for both sets of 
subjects). Analysis of the differential transfer of all 12 MT unit 
tasks can help to localize the transfer of particular operators. 

Table 3.7 presents transfer scores expressing MT planning 

Table 3.7. MT planning time transfer to EMACS. All numbers are 

expressed as percentages (equation 3.2). 
  

  

  

Training Editing operation 

Data object condition Insert Replace Delete 

Character Line editor 90 77 90 
Typing 26 —39 89 

Word Line editor 48 77 83 
Typing 28 50 74 

String Line editor 64 43 28 
Typing 71 35 —98 

Line Line editor 33 58 77 

Typing —8 12 29 
 



Lateral Transfer 101 

time transfer from the line editors and typing to EMACS. Once 
again, the scores are based on data from the first two days of 
learning and transfer. There is no evidence for any general trend 
of the type observed in the unit-task learning data. Overall, the 
transfer data is much more variable and irregular. To facilitate its 
interpretation, we plot the savings scores along number lines 
which show the relative orderings of the various subgoals. Fig- 
ure 3.13 shows this representation of the data. 

Rather than attempt to understand the entire continuum of 
subgoal transfer data, we focus on those subgoals at either end 
of the distribution, that is, those that exhibit the most and least 

transfer. Interestingly, the delete character subgoal shows the 
most transfer and the delete string subgoal the least in both line 
editor and typing distributions. Another strong performer for 
both groups is the delete word subgoal, whereas the delete line 
subgoal is strong for only line editor subjects. 

What might explain such a pattern of results? Most compel- 
ling is the fact that these extreme sites are all instances of delete 
operations. Furthermore, in both the line editors and the typing 
control, subjects do learn a deletion operator that could transfer 

to EMACS: the delete key. The delete key is used to edit mal- 
formed commands in the line editors and to correct typos in the 
typing control. So, although the delete key is not used as part of 
any text-editing method that can be transferred whole cloth to 
EMACS, it nevertheless might be available for use as the termi- 

DL DW 
RS RW OC 

DS IL IW RLIS RC _ IC 
J---------- J---------- |J---------- J--------- 4 

-100 -50 O 50 100 

(a) from line editors to EMACS 

DL 
IW IS 

DS RC IL RL IC RS RW DW OC 

|------------ |------------ |------------ |--------- HH | 
-100 -50 O 50 100 

(b) from typing to EMACS 

Figure 3.13. Number line showing ordering of unit tasks in terms of MT planning time 
transfer.



102 The Transfer of Cognitive Skill 

nal node in the goal tree of some new method. This would 
explain not only the high level of positive transfer for the delete 
character and delete word subgoals, but also the low-level and 
even negative transfer for the delete string subgoals. There are 
much more efficient methods for deleting strings in EMACS 
than the repetitive use of the delete key. 

An earlier analysis of the transfer of LL methods between the 
line editors suggested that, if many methods exist for accom- 
plishing a goal, and most are new but one is familiar, the familiar 
method will be favored. When this general rule is applied to the 
present situation, if the delete key is in fact a source of transfer to 
EMACS, line editor and typing control subjects should use the 
delete key more often in EMACS than should EMACS control 
subjects. Examining the deletion methods used on the first day of 
learning and transfer, we found that, whereas EMACS control 

subjects used the delete key in 50 percent of their methods, line 
editor and typing control subjects used it in 68 percent of theirs. 
This result suggests that the delete key is being transferred. 

This does not explain why the delete line subgoal shows a 
high level of positive transfer in the line editor group but not the 
typing control. In EMACS, the delete line operation is distin- 

guished from other deletion operations by a specialized method 
so efficient it precludes the use of the delete key. This method 
has the same goal structure as the delete line method in the line 
editors but involves different keystrokes. In all three editors, 
one moves to the line requiring deletion and types the delete 
line operator. (In the line editors the operator is d, and in 
EMACS, it is *k°k.) There is no such goal structure in the typing 
control; hence the difference in delete line transfer. 

Here, then, in the delete operations are two additional sources 

of MT transfer to EMACS. The first, the delete key, contributes 

to either positive or negative transfer, depending upon its in- 

teraction with unit task. The second, the delete line goal struc- 

ture, exists in only the line editor group and thereby contributes 
to the difference between line editor and typing control transfer. 
These specific cases illustrate the general point that, although 
text modification procedures in the line editors and EMACS are 
quite different in terms of overall goal structure, the two do 
share a number of leaf components. 

Summary of microanalysis 

Our microanalysis of the data provides support for two general 
conclusions. First, degree of transfer does seem to be a function



Lateral Transfer 103 

of the overlap in number of elements. Information-processing 
models like GOMS help to define shared goal structures which 
serve as a basis for positive transfer. For instance, the massive 

transfer in MT between the line editors was mediated by iden- 
tical goal structures underlying the different physical com- 
mands. Alternatively, in cases where tasks do not share goal 
structures, there can still be considerable transfer at the level of 
leaf nodes. This is the kind of superficial transfer that Thorndike 
would have identified. 

Second, a complex task like text editing can be decomposed 
into parts, and each part seems to be learned separately. For 
instance, components like LL are performed and learned inde- 
pendently of the context in which they occur. Also, time to 
perform highly practiced components such as typing do not 
speed up while the planning components show very rapid 
speedup. Finally, various components of the task seem to de- 
compose cleanly into planning and execution time. 

In short, while the task of text editing is complex, under the 
right analyses the underlying behavior is not. In line with Si- 
mon’s (1969) long-standing claims, the complexity of behavior 
simply reflects the complexity of the task. 

Simulation Models and Quantitative Predictions 

Up to now, we have been content to make transfer predictions 
based on rather qualitative analyses of similarity. We now make 
quantitative predictions of transfer based on detailed task anal- 
yses of text-editing skill in the three editors. The product of 
these task analyses is a set of production system models which 
simulate skilled, error-free text-editing behavior in each of the 
editors. The underlying goal structures used in our models are 
based largely on the GOMS keystroke level analysis of Card et 
al. (1983). The GOMS model uses a strict hierarchical control 

structure to model expert, error-free text-editing behavior. With 
such a restricted goal structure, the GOMS model is not a true 
instance of a production system, although it can be easily 
adapted to one. To recast the GOMS model as a production 
system, we assume that several productions fire to create the 
top-level goal structure shown in Figure 3.9. In response to each 
of these major goals, additional productions fire to create sub- 
goals and eventually actions. This production system analysis is 
essentially identical to the GOMS formulation. In our simula- 
tions, we use the GRAPES production system language (Sauers 
and Farrell, 1982), which supports the construction of hierarchi-



104 The Transfer of Cognitive Skill 

cal goal trees and restricts production firings to those relevant to 
the current goal. 

Using such production system models, a first approximation 
to a transfer prediction involves comparing two sets of produc- 
tions for different editors. To the extent that the production sets 
overlap, transfer is positive from one skill to the other. To get a 
somewhat more accurate prediction, we assign weights to the 
productions according to their frequency of use in the transfer 
task. A production which fires frequently in the transfer task 
contributes more to the time estimate than one that fires sel- 
domly. This point figures prominently, because the productions 
which generate the upper-level goal structures common to all 
editors are relatively high-frequency productions, firing in ser- 
vice of every unit task. 

A total of 107 distinct production rules are used to simulate 
behavior in the three editors. A good proportion of these rules 
do double-duty, applying in more than one editor. Table 3.8 
summarizes the rules and categorizes them in terms of whether 
they contribute to the LL component or the MT component. 
Furthermore, these rules are categorized according to their range 
of application. The categories are: 

General. Rule applies in all three editors. 
Line. Rule applies in both line editors, ED and EDT. 
ED. Rule is specific to ED. 
EDT. Rule is specific to EDT. 
Screen. Rule is specific to EMACS. F

O
R
 
W
N
 

Table 3.8. Categories of rules and their frequencies in the text- 
editing simulations. 
  

  

Component Category Number of rules Total frequency 

LL General 6 96.0 

Line 10 59.4 

ED 5 49.7 

EDT 7 73.4 
Screen 20 151.0 

MT General 3 32.0 

Line 24 105.3 
ED 6 23.0 
EDT 5 14.0 

Screen 22 88.0 
 



Lateral Transfer 105 

There are no rules that are common to a specific line and 
screen editor, such as EDT and EMACS. 

Table 3.8 also shows estimates for total frequencies of occur- 
rence for each set of rules. These estimates were derived by 
simulating each production set on 10 randomly selected trials 
from the experimental manuscript. The numbers reflect the av- 
erage number of firings of a rule on any two trials that contain 
the 12 kinds of edits subjects had to perform. Thus, for a rule 
that fires once on every unit task, such as the rule that sets the 
subgoals of locate line and modify text, the frequency of occur- 
rence is 12. The numbers in the table are simply summations 
over all rules in the set. 

Four rules common to all editors are not represented in Table 
3.8 and make no contribution to our calculations. Two of these 
are rules for typing, and it has been shown in the learning 
analyses that there is virtually no speedup in the execution (that 
is, typing) component. It is a general principle that a component 
which exhibits no learning can have no impact on transfer. 
Therefore, we exclude typing productions from the analysis. 
The productions shown in the table contribute solely to the 
various planning components, so we restrict ourselves to pre- 
dictions of planning time in these transfer analyses. The other 
two excluded rules concern failing to acquire the next unit task 
and terminating with success when the acquire unit task goal 
fails. These rules fire in succession at the very end of each trial, 
and the associated pause is not included in any of our measure- 
ments. Since it is impossible, given space limitations, to describe 
each rule in detail, we give brief descriptions of each category 
and one or two examples. 

LL General contains rules for generating the upper levels of the 
goal tree in Figure 3.9 and rules for acquiring edits from the 
manuscript. An Englishified version of one rule is: 

execute-unit-task-General 

IF the goal is to execute-unit-task 
THEN set as subgoals to 

1. locate line 
2. modify text. 

These are all relatively high-frequency rules and therefore make 
strong contributions to LL transfer among the editors. 

LL Line contains rules for deciding between primary and sec- 
ondary LL methods in the line editors, terminating commands 
with carriage return (this rule also appears in MT Line), recog-



106 The Transfer of Cognitive Skill 

nizing when movement is and is not required, and determining 
whether a string search is successful and how to pad the string 
to make it unique. These rules apply only in EDT, since ED uses 
number rather than string addressing methods for locating lines. 
However, these rules appear in the MT component of ED, since 
unique strings must often be selected as arguments to the sub- 
stitution command. Therefore, these rules appear in the LL Line 
category rather than in the LL EDT. 

An Englishified version of a rule from this set is: 

choose-LL-secondary-Line 

IF the goal is to choose a command 
and the supergoal is to locate line 
and the current line is =linel 
and the target line is =line2 
and =line2 is immediately after =linel 

THEN use the secondary carriage return method. 

This rule implements the decision rule to select carriage return 
to move down a single line. This secondary method is of course 
common to both line editors. 

LL ED contains rules which specify the primary LL method in 
ED and rules which court lines of the manuscript in order to 
supply the line number argument. The rules that specifies the 
method is: 

LL-primary-method-ED 

IF the goal is to enter a command 
and the command is LL-primary 

THEN set as subgoals to 
1. specify the line number 
2. specify the command symbol. 

This rule ultimately leads to the generation of a command such 
as 10p, which positions the user on the tenth line of the file. 

LL EDT contains rules which specify the primary LL method 
in EDT and rules for iterating through lines of the manuscript to 
test the uniqueness of a search string. The rule that specifies the 
primary LL method in EDT is: 

LL-primary-method-EDT 

IF the goal is to ender a command 
and the command is LL-primary 

THEN set as subgoals to 
1. specify the command symbol



Lateral Transfer 107 

2. specify the search string delimiter 
3. specify the search string 
4. specify the search string delimiter. 

This rule leads to the generation of a command such as t ‘hello’, 

which positions the user on the first line containing the string 
hello following the current line. 

LL Screen includes rules for choosing among the various LL 
operators in EMACS (such as forward-word, backward-word, 

beginning-of-line) and special-case rules for stopping in position 
depending upon the direction of movement. For example, the 
user stops immediately to the right of certain modifications when 
coming from the right, but immediately to the left when coming 
from the left. Two distinct rules are required to model this be- 
havior. Generally, the locate line methods in screen editors like 

EMACS are much more precise than those in the line editors, 
since both horizontal and vertical positions are specified. 

The rule that chooses to apply the forward-word operator is: 

choose-forward-word-Screen 

IF the goal is to move horizontally on a line 
and the cursor is to the left of the modification 
and one or more words separate the cursor and the 

site of the modification 
THEN choose forward word. 

A separate rule retrieves the command symbol associated with 
the forward-word operator. For example, this rule retrieves the 
binding for forward-word: 

forward-word-Screen 

IF the goal is to specify the command symbol 
and the command to be executed is forward-word 

THEN set as a subgoal to type Jf. 

MT General contains rules for setting the upper-level goal 
structure for modifying text, inserting text within a particular 
method, and verifying the location of an edit. This last operation 
is technically part of LL but is counted as part of MT by our 
parsing algorithm. 

This rule sets the goal structure for modify text: 

modify-text-General 

IF the goal is to modify-text 
THEN set as subgoals to



108 The Transfer of Cognitive Skill 

1. choose a method 

2. use the chosen method 

3. verify the edit. 

MT Line contains the many rules shared by the line editors for 
MT . Some of these are rules for selecting a particular MT operator; 
others concern the specification of string arguments to the heavily 
used substitution command. In the latter category, many rules 
deal with the management of space. For example, one rule states 
that if the goal is to delete text that has space on both sides, then 

one of those spaces should also be deleted. Similar considerations 
come into play for text insertion. For example, this rule deals with 
the insertion of a word or string of words into a line of text: 

second-argument-insert-middle-space-Line 

IF the goal is to specify the second argument to the 

substitution command 
and the modification is the insertion of a word or 

string of words 
THEN pad the insertion with a space on the end. 

This rule ensures that all words are separated by spaces follow- 
ing text insertion. 
MT ED rules retrieve the particular MT command buildings for 

ED. For example, this rules retrieves the binding for replace-line: 

replace-line-ED 

IF the goal is to specify the command symbol 
and the command is replace-line 

THEN set as a subgoal to type c. 

MT EDT rules supply the command bindings for EDT and are 
almost completely analogous to those in MT ED. One difference 
is that the rule for supplying the syntactic terminator for the 
substitution command in ED is missing in EDT, since no syn- 
tactic terminator is required (see Figure 3.1). 
MT Screen rules concern the selection of MT methods in 

screen editors like EMACS and also the management of space, 
which is also a source of common rules in the line editors. As an 
example of the former type, this rule selects the kill-line deletion 
method: 

choose-kill-line-Screen 

IF the goal is to delete text 
and the deletion spans the entire line 

THEN use the kill-line method.



Lateral Transfer 109 

As an example of the latter type, the next rule checks for super- 
fluous space following a deletion: 

too-much-space-Screen 

IF the goal is to check for space following a deletion 
and the cursor is positioned on a space character 
and the character to the left is also a space character 

THEN delete the previous character. 

In addition, four rules in this category specify the command 
bindings for the four deletion operators in EMACS. Several 
examples of these kinds of rules have been shown already. 

This completes our description of the rule sets used to simu- 
late behavior in the editors. One remaining task is to identify the 
rules that in our view are practiced by the typing control group 
and are transferred to EMACS. Typing control subjects must 
acquire edits from the manuscript and therefore practice two 
high-frequency rules from LL General. As for MT, subjects prac- 
tice only a single rule from the MT Screen category, which states 
that if the goal is to insert text, then set as a subgoal to type that 
text (the typing interface, like the screen editors, was always in 
the insert mode). 

Given this task analysis, we are now in a position to make 
quantitative predictions of LL and MT planning time transfer for 
all conditions. The method is simply to sum the production 
frequencies for a particular editor and then figure the percentage 
of firings that involve known rules. Of course, the known rules 
are defined by our various categories and differ depending on 
the particular transfer condition being modeled. For example, to 
calculate percentage transfer for LL from ED to EDT, one would 
use the formula: 

  

f + for LL General LL Line (3.3) Tyredicted = x 100 
Pree’ fi General + fi Line + fur EDT 

Here f, is the sum of production frequencies for category x. In 
this case, the numerator represents the rules shared by the line 
editor LL components, and the denominator represents the en- 
tire set of rules required for LL in EDT. Instantiating this for- 
mula, we get: (96 + 55.4) / (96 + 55.4 + 73.4) x 100 = 67%. 

Whereas equation (3.3) generates our theoretical predictions, 
we use a different equation, equation (3.2), to measure transfer 
empirically. At first blush, the equivalence of equations (3.3) 
and (3.2) is not apparent. However, in Chapter 9 we will show



110 The Transfer of Cognitive Skill 

that equation (3.2) can be reduced to equation (3.3) under a 

certain set of assumptions: 

1. All productions take roughly the same amount of time to 
learn and execute. 

2. Exposure to the training task does not affect the structure 

of the transfer task. 
3. Common elements occur with roughly the same frequen- 

cies in the training and transfer tasks. 
4. Measures of subject performance are aggregated over 

roughly the same number of trials in training and transfer tasks. 

Violations of these assumptions may account for certain discrep- 

ancies between predicted and observed values. 
Table 3.9 presents predicted and observed transfer percent- 

ages for the various conditions from both experiments in tabular 
form, and Figure 3.14 presents that same data in graphic form. 

Generally, we see a remarkably good fit between predicted and 

observed values; the correlation between these sets of points is 

.98. This represents an almost perfect linear relationship be- 

tween the production overlap predictions and empirical mea- 

sures of transfer. This linear relationship is: 

(3.4) T obs = .26 + 887 pred 

Here T,,, is the observed transfer and T,,,.q is the theoretical 

prediction. Unfortunately, this equation is less than perfect, 

because it predicts greater than 100 percent transfer when 

Table 3.9. Predicted and observed transfer percentages (equations 
3.3 and 3.2, respectively) for all transfer conditions in the 

text-editing experiment. 
  

  

Training Transfer Predicted Observed 

Component editor editor transfer transfer 

LL ED EDT 68% 87% 

EDT ED 75 91 

Line EMACS 39 61 

Typing EMACS 19 35 

MT ED EDT 90 105 

EDT ED 85 99 

Line EMACS 27 62 

Typing EMACS 7 29 
 



Lateral Transfer 111 

  
  

HOP 

lOOF 

90F 

8O0F 

2 
c 5 TOF 

= 

3° oO 
> 60f 
@® 

Ww 

OS 
50Fr 

40+ 

QO 

30 4 

20 tL j I I I J 

0 20 40 60 80 100 I20 

Predicted transfer 

Figuer 3.14. Observed and predicted transfer percentages. 

Trea = 1, that is, when there is total production overlap. It 
appears that in all eight cases we are underpredicting the 
amount of observed transfer. 

One simplifying assumption (assumption 1 above) made 
throughout this analysis is that all productions have equal cost 
in terms of learning and therefore contribute equally to transfer. 
However, given the systematic bias in our predictions, we may 
be assigning inappropriate weights to the components of trans- 
fer. Specifically, we are apparently underestimating the contri- 
bution of the general components and overestimating the 
contribution of the specific components. Looking at the low 
extreme case, we find ourselves predicting about 13 percent 
transfer in the case of typing to EMACS and observing about 32 
percent. The typing condition and EMACS share a high-



112 The Transfer of Cognitive Skill 

frequency production that encodes edits from the manuscript. It 
is perhaps reasonable that there is more to a production that 
interprets the edit marks on a line than many of the productions 
specific to EMACS, such as a production that issues the ‘f key- 
stroke. Looking at the high extreme case, we predict 79 percent 
transfer between the line editors and observe 96 percent. This 
suggests that the productions specific to the line editors are 
being overweighted. Again, it is not unreasonable to suppose 
that a production which issues the p command is less costly to 
learn than a production which decides among methods. 

To identify the appropriate weightings, we could rewrite the 
linear transfer equation as: 

(3.5) T ST prea + G 
bs ~ 746-5 

Here the +G represents the extra emphasis needed for the 
general productions, and the — S represents the lesser emphasis 
needed for the terminal productions unique to an editor. With- 
out these adjustments, equation (3.5) reduces to the simple 
equation T,,, = Tyrea When G = .3 and S = .16, equation (3.5) 

reduces to equation (3.4). 
In summary, we are encouraged by the close linear relation- 

ship between observed and predicted transfer. The fact that we 
do not get the simple equation T,,, = T,,-q probably reflects the 

fact that different productions deserve different weightings in 

the transfer equation. 

Conclusion 

The analysis of transfer in the text-editing experiment has im- 
plications for the identical productions model of transfer. The 
very high level of positive transfer observed between text edi- 
tors that shared few commands reinforces the position that su- 
perficial identical elements models of the type that Thorndike 
advocated are inadequate. The fact that most of the transfer was 
localized in the planning components provides further support 
for an abstract representation of elements, as in our ACT” pro- 
duction system models. 

Our ability to predict magnitudes of positive transfer is fur- 
ther evidence not only for the identical productions model of 
transfers but also for the GOMS model of text-editing skill upon 
which it is based. Transfer predictions are most likely to be 
correct when based upon the kind of thorough rational and



Lateral Transfer 113 

empirical task analysis provided by GOMS. However, although 
our GOMS-based identical elements model was quite successful 
at making relative predictions, it was less able to predict the 
magnitude of transfer in absolute terms. Putting aside the diffi- 
culties resulting from inaccurate task analyses, quantitative pre- 
dictions are still quite difficult when studying a complex skill 
such as text editing in full-blown form. One reason for the 
difficulty is that, in an editor with close to full functionality, 
subjects are confronted with many choices concerning methods 
for accomplishing particular edits. One subject may fixate on a 
method in a training editor which figures prominently in a 
transfer editor, whereas another may fixate on a method which 
has no role in the transfer editor at all. As a result, the first 
subject exhibits more transfer than the second. This difficulty 
arises whenever methods and strategic knowledge play a prom- 
inent role in a skill. Unless subjects are forced to practice certain 
components, transfer will be indeterminate to some degree. 

Our observation that subjects tended to carry over methods 
adds a qualtitative dimension to transfer as well as a quantitative 
one. Specifically, transfer subjects relied more heavily on the 
secondary carriage return method for locating lines in the line 
editors and the delete key to modify text in EMACS. In such 
cases, the application of the known method may yield positive 
or negative transfer, depending on whether the method is op- 
timal in the transfer task. Of course, transfer of methods is just 
another case of transfer of productions, but it clearly complicates 
using production overlap to make quantitative predictions of 
certain performances measures like time. 

The sharp discrepancy between the amount of improvement 
in planning time versus typing time reinforces the methodolog- 
ical point that transfer of a complex skill involves the indepen- 
dent contributions of many components at different levels of 
learning. Those components that exhibit little learning in the 
training task have negligible effect on performance in the trans- 
fer task.



4 / Negative Transfer 

A first glance, our identical elements theory seems to make 
a rather counterintuitive prediction concerning negative 

transfer, namely that it does not exist. Our simple prediction is 
that transfer is a function of overlap in productions between two 
tasks. One might conclude that the worst possible transfer sit- 
uation is when there is no overlap between two sets of produc- 
tions, in which case transfer is zero, not negative. 

However, claims of negative transfer abound. For instance, a 
considerable amount of folklore surrounding the use of comput- 
ers concerns the negative transfer suffered in moving from one 
system to another. We can personally testify to the negative 
transfer we suffer between different dialects of LISP. We are 
often confused, for instance, about the names of certain func- 
tions and the order of arguments. However, complaints such as 
ours are not convincing as evidence against identical elements 
theories. Presumably, by any aggregate measure, we perform 
much better in one dialect of LISP as a consequence of learning 
another, as measured against a naive control. The few loci of 
negative transfer require refined measurements to identify and 
are dominated completely by the positive effects. It turns out 
that negative transfer at the aggregate level is quite difficult to 
observe experimentally. 

Upon closer inspection, however, we see that there are two 

possible sources of negative transfer in our simple identical- 
productions model. One is the transfer of nonoptimal methods, 
which we observed at least once (the use of the delete key) in the 
text-editing experiment. In this case, the transfer of productions



  
Negative Transfer 115 

is perfect and complete. However, even though the productions 
apply in the transfer task, they are nonoptimal relative to what 
control subjects would acquire through a more direct exposure. 

The second possible source of negative transfer is the transfer 
of productions whose conditions match but whose actions are 
completely inappropriate in the transfer task. In this case, a 
subject has failed to discriminate properly between training and 
transfer tasks and mistakenly applies productions which are 
overly general. To remedy the situation, subjects must learn 
new productions whose conditions are more specific and whose 
actions are suited to the transfer task. 

These first two types of negative transfer are relatively easy to 
detect in that they lead to behaviors that deviate in a qualitative 
way from optimal behavior. In both cases, subjects mistakenly 
believe that they know what is appropriate in certain situations 
and fail to realize that new productions must be learned. For this 
reason, we characterize the interference in these cases as acqui- 
sition interference. This simply means that old productions are 
interfering with the acquisition of new productions. 

There is a third type of negative transfer, however, whose 
origin is more subtle and whose presence is more difficult to 
detect. This final type may be thought of as true procedural 
interference in that the presence of one production may actually 
disrupt the performance of another, rather than simply the acqui- 
sition of another. True procedural interference is a logical con- 
sequence of the implementation of pattern matching in the ACT* 
theory (see Anderson, 1983, ch. 4). The theory states that when 
a set of productions shares conditions that match the same 
elements in working memory, the matching of any single pro- 
duction from the set takes longer because it is competing with 
the other productions for activation from the elements. 

In ACT", productions are matched through the use of 
activation-based data flow networks similar to the ones used in 
McClelland and Rumelhart’s interactive activation model (1981) 
and Forgy’s RETE algorithm (1979). In the network, activation 
spreads from source nodes, which are active elements in work- 
ing memory, to intermediate-level nodes, which are individual 
tests and pairwise conjunctions of tests from the left-hand sides 
of productions, and finally to top-level nodes, which represent 
individual production rules. When the level of activation ex- 
ceeds some threshold at a top-level production node, the pro- 
duction fires. Interference in the network arises from the fact 
that productions sharing intermediate level nodes in the net- 
work (that is, sharing tests on the left-hand sides) are connected



116 The Transfer of Cognitive Skill 

through inhibitory links. Through these links, strongly activated 

productions drive down the activation of weakly activated pro- 

ductions until a single production emerges as the undisputed 

choice on a particular matching cycle. The overall effect of the 

inhibitory links on performance, however, is to lengthen the 

amount of time it takes for any production to fire when there are 

multiple partial matches. The amount of interference is directly 

related to the number of shared tests on the left-hand sides. 

It is unclear to what extent this third type of negative transfer 

disrupts performance in normal situations. We suspect that in 

most cases it is a rather subtle effect that is dominated by the 

other transfer sources we have enumerated, both positive and 

negative. True procedural interference has generally been diffi- 

cult to observe experimentally, although certain well-known 

instances exist. One such instance is the Stroop effect (1935), 

where subjects are shown words printed in different colors and 

are asked to say the color of the word. Subjects have trouble 

with this task when the word happens to spell the name of a 

color that differs from the color of the ink. For example, a trou- 

blesome stimulus might be the word yellow printed in red ink. 

Generally, subjects take longer to say the color of the ink in 

these cases and sometimes mistakenly blurt out the word itself. 

Interestingly, Cohen, Dunbar and McClelland (in preparation) 

recently proposed a connectionist model of the Stroop effect 

which uses many of the same ideas presented here concerning 

shared nodes and inhibitory links. 

Negative Transfer in Historical Perspective 

The first two types of negative transfer, nonoptimal and overly 

general methods, are well documented in the classic work by 

Luchins (1942) on the Einstellung effect. Einstellung is the Ger- 

man word for set and refers to the tendency of subjects to 

become mechanical in their choice of methods when solving a 

sequence of similar problems. Luchins gave his subjects a series 

of waterjug problems which involved the pouring of water into 

and between jugs of various sizes in order to get a desired 

quantity. For example, if jugs A, B, and C held the quantities 15, 

39, and 3 fluid ounces, respectively, and the goal was to get 18 

fluid ounces, then one solution (denoted B — A — 2C) would be 

to fill B, fill A from B, and fill C from B twice (39 — 15 — 3 — 3 

= 18). A more direct solution would be simply to combine A 

and C into B(A + C). Luchins gave his subjects five training and 

five transfer problems. The training problems could be solved



Negative Transfer 117 

only by the B — A — 2C method. The first two transfer problems 
could be solved by both B — A — 2C and a more direct method 
(such as A + C), the third problem could be solved only by the 
direct method (A + C), and the last two problems could once 

again be solved by both methods. Thus, Luchins encouraged 
the acquisition of a method which was alternately nonoptimal 
and completely inappropriate on transfer problems. 

Luchins found that training on the first five problems caused 
subjects to overlook almost completely the more direct solution 
on the first two transfer problems. In a preliminary experiment 
involving 11 subjects, not a single subject noticed the simpler 
solution. Here, then, is the case of transfer of nonoptimal meth- 
ods. Luchins pointed out that mechanization in these cases is 
not necessarily bad and may in fact be adaptive from a cognitive 
economy standpoint. Subjects are spared the work of searching 
for a solution and are in many cases faster than control subjects. 

Luchins found, however, that his subjects also performed 
much worse on the third transfer problem (the one not admit- 
ting a B — A — 2C solution) than control subjects who had 
solved no problems. In one experiment involving college se- 
niors, only 39 percent of the experimental subjects could even 
find a solution to the problem, compared with a 100 percent 
success rate for control subjects. Thus, it appears that his sub- 
jects were fixated on a method that was not just nonoptimal but 
completely wrong, and this blinded them to the possibility of 
other methods. Luchins explains this result in terms of subjects 
making the mistaken generalization that all problems were of 
the same type and could be solved by the same method. Con- 
sequently, subjects did not confront each problem on its own 
merits and simply lapsed into the mechanical application of a 
known method. 

This, then, is one of the few reported instances of negative 
transfer at the aggregate level. One additional instance comes 
from the realm of verbal learning. The classic interference ex- 
periment involved learning two lists of paired associates which 
had the same stimuli but different responses. The standard re- 
sult was that recall of the second list was worse as a conse- 
quence of learning the first list (Postman 1971). 

Although we have now cited two instances of negative trans- 
fer at the aggregate level, in most cases the effect is quite hard to 
capture in the laboratory (Bilodeau and Bilodeau, 1961; Ham- 
merton, 1981; Newell 1981). In fact, Osgood’s transfer surface, 

which represents a largely successful effort to summarize the 
verbal learning transfer literature, was critized primarily for the



118 The Transfer of Cognitive Skill 

unreliability of many of its predictions concerning negative 
transfer (Bower and Hilgard, 1981). Part of the confusion con- 
cerning negative transfer has stemmed from the fact that the 
likelihood of observing the effect depended upon how transfer 
was measured. The standard result in studies of verbal learning 
and perceptual-motor skill is that negative transfer is quite short- 
lived, having a half-life on the order of a few trials (Lewis, 1959; 
Bilodeau & Bilodeau, 1961; Hammerton, 1981). Therefore, if a 

researcher takes a short-sighted view and measures performance 
on only a single or perhaps several trials on the transfer task (as 
in the two instances of aggregate negative transfer already re- 
ported), negative transfer is likely to be observed in certain 
cases. However, if one takes an extended view and measures 
performance over, say, dozens of trials, negative transfer rap- 
idly convert to positive transfer (Bilodeau and Bilodeau, 1961). 
Thus, there is often a lack of correlation between initial perfor- 

mance and long-term savings. 
An interesting illustration of this discrepancy comes from the 

study of perceptual-motor skill, specifically the study of simu- 
lators as substitutes for direct practice on complex tasks, such as 

flying an airplane (Holding, 1981). A large part of the skill of 
flying involves making the appropriate motor responses to a 
variety of stimuli or signals, primarily visual ones. Simulators 
have been designed which attempt to capture the essence of 
many of these stimulus-response connections but which neces- 
sarily cannot replicate the totality of the flying experience. For 
example, a simple simulator might involve moving a control- 
stick in response to the movement of a dial or pointer. Real 
flying is of course much more complex than this, and trainees 
often experience negative transfer on their first flight after prac- 
tice on a simple simulator. This effect has been attributed to 
stimulus compounding, the difficulty associated with detecting 
and attending to the relevant training stimuli among a sea of 
new and distracting stimuli (Hammerton, 1981). Nonetheless, if 
long-term savings rather than initial performance is of primary 
interest, even the simplest simulators have been shown to be 
remarkably effective (Hammerton, 1967). For example, Flexman, 
Matheny, and Brown (1950) reported significant reductions in 
dual-control hours following practice on a simulator which pre- 
sents an “artificial horizon” to trainees consisting of nothing 
more than a line on a board held up by an instructor. This 
reinforces the general point that, over time, negative transfer 

gives way to positive transfer. 
To interpret what is happening in these situations requires a



Negative Transfer 119 

slight refinement of the identical productions model. This re- 
finement involves consideration of the hitherto ignored declar- 
ative component out of which productions are compiled. Recall 
the two sources of negative transfer, one involving the transfer 
of nonoptimal methods and the other involving the transfer of 
plainly incorrect methods. Our claim is that, in most practical 

situations where savings measures are of primary concern, only 
nonoptimal methods make a lasting and nonnegligible contri- 
bution to negative transfer. Incorrect methods are quickly dis- 
cerned and supplanted by new productions which have been 
compiled from properly discriminated declarative encodings. 
This process is greatly facilitated by a learning environment that 
is highly reactive. It is the declarative precursors which are 
discriminated, not the productions themselves. This position, 
which differs from the view put forth in Anderson (1983), arose 
from recent studies of skill acquisition which suggested that 
discrimination processes were under the conscious control of 
subjects and operated on declarative structures (Lewis and 
Anderson, 1985). Productions which produce clearly inappro- 
priate actions contribute to poor initial performance on a trans- 
fer task but are quickly weeded out. Productions which produce 
actions which are merely nonoptimal, however, are more diffi- 
cult to detect and persist for longer periods. Our claim is that 
these nonoptimal methods constitute the sole source of negative 
procedural transfer in the limit. 

Although negative transfer is a well-established phenome- 
non, this fact need not disconfirm the identical productions 

model. That model makes no necessary prediction about per- 
formance. It says only that productions will transfer wholly and 
completely from one task to another when they can. Whether 
this results in improved performance depends on whether the 
productions are optimal for the task. 

One might conclude that these caveats concerning negative 
transfer take away some of the predictive power of an identical 
productions model. However, they only eliminate a program 
like Thorndikes’s from trying to predict aggregate performance 
on the basis of a superficial analysis. There are a number of ways 
to make the theory testable: 

1. Develop detailed models of the production overlap and 
make predictions on that basis. 

2. Examine transfer of methods at specific loci. 
3. Get convergent measures, such as protocols, for the hy- 

pothesis of transfer of inappropriate methods.



120 The Transfer of Cognitive Skill 

Negative Transfer in Text Editing 

Our claim, once again, is that nonoptimal methods constitute 
the sole source of negative transfer after extended practice on a 
transfer task. Consequently, it seems clear that in most cases the 
identical productions theory predicts that transfer will be largely 
positive when there is much production overlap. The few ex- 
ceptions to this rule concern those situations where some key 
productions apply which are very nonoptimal. Typically, these 
productions fire at the very top of the goal tree and force a 
highly unnatural decomposition of the task. In most cases, how- 
ever, transfer at the aggregate level is positive. 

In order to press this issue of negative transfer to the limit, we 
tried to create a situation where the identical productions model 
would be committed to predicting large positive transfer and yet 
where intuition told us we would get negative transfer. We 
accomplished this by importing a classic interference paradigm 
from verbal learning into the domain of text editing. For our 
purposes, we created a new, special kind of editor for the trans- 

fer task. This editor is identical to EMACS, with the one excep- 
tion that all the control and escape keys are replaced or 
scrambled. For example, in regular EMACS, “d deletes a char- 
acter and ‘e moves to the end of a line, whereas in this new 
editor, “d moves down a line and “e deletes a word. In all, almost 
half of the commands in the new editor are bound to keys used 
for contrary purposes in EMACS, with the remainder bound to 
entirely new keys. For obvious reasons, we call this new editor 
perverse EMACS. 

Were a subject to learn EMACS first and then perverse 
EMACS, it would be reasonable to expect a lot of negative 
transfer. In fact, if we regard the functions of the keys as the 
stimuli and the bindings as the responses, we have an approx- 
imation to the classic A-B, A-Br interference paradigm used in 
verbal learning research (Postman, 1971). The important obser- 

vation, however, is that an identical productions model like ours 

predicts strong positive transfer in this situation. Using the stan- 
dard goal tree representation of skill, perverse EMACS is iden- 
tical to EMACS, except that the terminal nodes executing specific 
EMACS keystrokes have been replaced. In other words, EMACS 
and perverse EMACS share all the internal nodes of their goal 
trees and differ only in the leaves. 

The basic plan of our experiment was to teach subjects 
EMACS, then perverse EMACS, and finally EMACS again. 
Our major prediction was that each of the transitions would



Negative Transfer 121 

be marked by strong positive transfer. Not only would sub- 
jects’ initial training on EMACS transfer to perverse EMACS, 
but also their continued training on perverse EMACS would 
serve to improve their performance on EMACS when they 
returned to it. Aside from these general predictions, we 
claimed that transfer would be localized primarily to the vari- 
ous planning components in the editors, since the areas of 
overlap lie mainly in the underlying goal structures and not 
the surface procedures. 

Our experiment had one other feature which serves as an 
additional source of transfer predictions. We compared the per- 
formance of one group that passed through the basic EMACS-~ 
perverse EMACS-EMACS cycle with another group that passed 
through the same cycle except that it learned one of the line 
editors first. The crucial manipulation here is that we controlled 
the amount of practice the second group got so that, with its 
combination of line editor and EMACS training, it was perform- 
ing as well on EMACS prior to transfer to perverse EMACS as 
was the first group that had EMACS training alone. Although 
the groups performed equivalently on EMACS, we predicted 
that they would show differential transfer to perverse EMACS. 
This is due to the fact that the two groups had different learning 
histories and therefore different compositions of text-editing 
skill. Our specific prediction was that the transfer task would 
favor the group with the combination of line editor and EMACS 
training. 

This prediction was based on the analysis that the group with 
prior line editor experience would achieve equal overall perfor- 
mance by having the components common to EMACS and the 
line editor better practiced and the components unique to 
EMACS less well practiced. Presumably, any component gen- 
eral to a line editor and EMACS would transfer completely to 
perverse EMACS, whereas those components specific to 
EMACS might not. Thus, the line editor group would show 
more transfer, reflecting a stronger general component. 

Method 

Subjects 

Subjects were 8 women from the same population as in the 
text-editing experiment from the previous chapter (experiment 
1). As before, they were balanced across groups for typing speed 
and performance on the building memory test.



122 The Transfer of Cognitive Skill 

Materials 

Three editors were used in this experiment: EMACS, perverse 

EMACS, and EDT. The decision to use EDT instead of ED as the 

line editor was entirely arbitrary. The functionalities of EMACS 
and EDT were identical to those in the first experiment (see 
Table 3.1). Table 4.1 presents a full comparison of the com- 
mands in EMACS and perverse EMACS. Although in the con- 
text of regular EMACS perverse EMACS is certainly a 
treacherous editor, every effort was made to make the com- 
mands sensible in their own right. In fact, we tried to preserve 
many of the more user-friendly design features of EMACS. For 
example, command names are mnemonic: “u moves the cursor 
up one line and “d moves it down. In addition, commands are 
grouped in pairs: Je deletes a character, and “e a word. In the 
latter case, however, just to add to the confusion, the function- 

ality of the escape and control keys within the pairs are re- 
versed, so that the escape version of the command operates on 
characters and the control version operates on words (just the 
opposite is true in EMACS). Finally, we designed perverse 
EMACS to approximate regular EMACS in its proportion of con- 
trol to escape key commands and also left-handed to right- 
handed commands. Our purpose in all of this was to make the 
new version of EMACS as learnable and usable as the old, so that 

Table 4.1. Screen editor command summary. The * denotes a control 
character and ] denotes an escape character. 
  

  

Command EMACS _ Perverse EMACS 

type Action binding binding 

Locative Forward character “f Jr 

Forward word ]f ‘r 

Backward character “‘b ll 

Backward word ]b ‘| 

Beginning of line ‘a “f 

End of line “e “b 

Previous line *p “u 

Next line ‘n ‘d 

Mutative Delete character “d Je 

Delete word . ]d ‘e 

Delete previous character DEL ‘a 

Delete line “*k “w 
 



Negative Transfer 123 

differences in performance between the two might be attributed 
to something besides absolute differences in the editors. 

Design 

Our primary task in designing this experiment was to give two 
groups different amounts of general and specific practice but 
equate their overall performance on EMACS prior to transfer. 
We calculated from experiment 1 that a group with roughly two 
days of EMACS practice would perform as well as another group 
with two days of EDT and one day of EMACS practice. More 
specifically, we calculated that two days of EMACS practice 
would leave subjects with slightly better performance, and so 
we planned to stop the subjects in this group on day 2 when 
their performance had reached the criterion level. This was our 
method for matching the two groups. 

The full design for the experiment was as follows. One group, 
called the line-and-screen group, started with two days of EDT 
followed by one day of EMACS, two days of perverse EMACS, 
and one day of EMACS. The second group, called the screen-only 
group, started with two days of EMACS, followed by two days 
of perverse EMACS, and two days of EMACS. 

Procedure 

The procedure was nearly identical to that used in the first 
experiment. Subjects spent three hours per day editing the stan- 
dard manuscript. With each new editor, subjects were given a 
half-hour introduction by the experimenter which included both 
a description of the commands and a demonstration of two 
trials. The only difference in the procedure was that, on day 2 
of the experiment, members of the screen-only group were 
stopped prematurely by the experimental program if their per- 
formance dipped below a target level. We determined this target 
level by yoking each subject from the screen-only group to an- 
other subject run earlier in the line-and-screen group. Pairings 
were based on rank orderings of subjects from performance on 
the first day of EMACS. As expected, all screen-only subjects 
attained their target levels on the second day of the experiment. 

Macroanalysis of Transfer 

As in experiment 1, there are two levels of data analysis. The 

macroanalysis describes transfer in terms of aggregate measures



124 The Transfer of Cognitive Skill 

    
  

lOOr 

90F 4 EMACS practice curve 
O Screen-only 

80F 

oS 7OF 
o 
— 

a e 60Fr 

Oo 
@® 

< SOF 
fo) 
O 
™~ 

~» 40F 
Cc 

Oo 

® 
yy 3OF 

20F 

lOF 

1 1 ] i l = J 

O | 2 3 4 5 6 7 

Day 

Figure 4.1. Comparison of the screen-only group from experiment 2 with the EMACS 
control group from experiment 1 in terms of time per correct edit. 

like time per correct edit and keystrokes per trial; the microanal- 
ysis describes attempts at localizing transfer through the appli- 
cation of the parsing algorithm. In the macroanalysis, the 
relative performance of the screen-only group enables us to 
assess whether there is negative transfer at the aggregate level. 
Since, as editors, EMACS and perverse EMACS are practically 
equivalent on all objective measures, we can use the EMACS 
learning curve from the first experiment as a rough approxima- 
tion to a perverse EMACS leaning curve and thereby gauge 
whether the screen-only group experiences positive or negative 
transfer overall. 

Figure 4.1 compares the screen-only and EMACS control 
groups on time per correct edit over six days of editing. The



Negative Transfer 125 

screen-only group spent days 3 and 4 of the experiment using 

perverse EMACS; all other data points in the figure represent 
performance on EMACS. The two curves follow each other fairly 
closely. In fact, t-tests revealed that the two groups are not 
statistically different on five of the six days. On only day 3, the 
first day of transfer to perverse EMACS, do the groups differ 
significantly (t(6) = 2.9, p< .05). The perverse EMACS subjects, 
however, are still 41 seconds faster on day 3 than they are on 
day 1. The EMACS control group is only 49 seconds faster. 
Thus, transfer is 41/49, or 84 percent. These results highlight the 
overwhelming similarity and positive transfer between the two 
editors. First, compared to day 1 using EMACS, there is large 
positive transfer to perverse EMACS for the screen-only group 
on day 3. The difference between the two groups on day 3 
represents the temporary deficit suffered by the screen-only 
group while learning the specific rules of perverse EMACS. By 
day 4, this deficit has largely disappeared, and on day 5, when 
the screen-only group returns to EMACS, it picks up at the same 
point on the learning curve as the group that stayed with 
EMACS all along. 

To characterize further these transitions between editors, we 
examined the keystroke data for intrusions. For present pur- 
poses, instrusions are defined as keys that are bound to com- 
mands in the training editor but are nonfunctional in the transfer 
editor. For example, in transfer to perverse EMACS these keys 
are defined as “k, “n, “p, Jb, Id, Jf, and DEL (see Table 4.1). This 
measure represents only a conservative lower bound on the 
actual number of intrusions, since approximately half of the 
keys are bound in both EMACS and perverse EMACS, in accor- 
dance with the A-B, A-Br paradigm. Undoubtedly, subjects con- 
fused these bindings and struck these keys at inappropriate 
times. However, the identification of intrusions of this type 
would have required uncertain inferences about subjects’ goals 
on our part. We chose to look at a more conservative measure 
which nonetheless reveals the approximate magnitude of the 
effect. 

On day 1 of perverse EMACS, subjects average only .28 in- 
trusions per trial. To put this in perspective, subjects average 
165 keystrokes per trial across an average of 19 trials on this day. 
Thus, intrusions amount to only .002 percent of the total keys 
struck. Additionally, the vast majority of these intrusions occur 
in the first few trials. This is in accordance with our analysis of 
the rapid extinction of blatantly incorrect productions. By the 
second day of perverse EMACS, intrusions are down to .08 per



126 The Transfer of Cognitive Skill 

trial, or approximately one intrusion for every 1,800 keystrokes. 
Therefore, even though we use a rather conservative measure, 
we are fairly confident in concluding that the firing of incorrect, 
EMACS-specific productions plays a short-lived and altogether 
negligible role in transfer to perverse EMACS. 

We return now to our prediction concerning differences be- 
tween the screen-only and the line-and-screen groups in terms 
of transfer to perverse EMACS. Figure 4.2 presents data that 
allow us to compare the two groups. Plotted is time per correct 
edit for the two days of perverse EMACS as well as for one day 
before and after (we plotted days 2-5 of the experiment for the 
screen-only group and days 3-6 for the line-and-screen group, 

60r 

4 Screen-only 
Oo Line-and-screen 

SOF 

30F 

Se
co

nd
s 

/C
or
re
ct
 
op
er
at
io
n 

20Fr   L __| 

2 

Day 

Figure 4.2. Transfer to perverse EMACS in terms of time per correct edit (the curves 

are aligned so that day 1 represents performance on EMACS prior to transfer, days 2-3 
performance on perverse EMACS, and day 4 the return to EMACS).



Negative Transfer 127 

so as to align the perverse EMACS data and to facilitate com- 
parisons). The two groups are matched quiet well on EMACS 
prior to transfer (43.5 and 44.2 seconds per edit for the screen- 
only and line-and-screen groups, respectively). However, these 
functionally equivalent groups are separated by transfer to per- 
verse EMACS. A one-tailed matched-groups t-test confirms that 
the average performance on perverse EMACS of the screen-only 
group is significantly worse than that of the line-and-screen 
group (f(3) = 2.3, p < .05). Interestingly, the last day plotted, 
which represents the return to EMACS, shows that the two 

groups never quite recover their former equivalence: the screen- 
only group continues to lag behind. 

As might be expected from the results of experiment 1, the 
pattern observed in the time data is duplicated almost perfectly 
in the keystroke data. Our matching procedure inadvertently 
matched groups on keystrokes as well as time per edit, giving 
further credence to the position that number of keystrokes is a 
major predictor of performance in text editing. Once again, the 
two groups are separated by the transfer task, but this time the 
matched-groups f-test is only marginally significant (t(3) = 1.7, 
p < .09). If we accept the keystroke difference as real, however, 
it sheds an entirely new light on our interpretation of the re- 
sults. Until now, we have explained the screen-only group’s 
inferior performance in terms of a weaker, less-practiced general 
component that runs more slowly in perverse EMACS. This 
kind of explanation is based on a strong identical elements 
model of transfer that makes no appeal to negative transfer. 
However, the disadvantage in keystrokes raises the possibility 
that the screen-only group’s strong specific component is play- 
ing a role as well. The group’s well-practiced EMACS-specific 
methods may be interfering with the acquisition and use of 
efficient methods in perverse EMACS. With this kind of expla- 
nation, the screen-only group is in a kind of double jeopardy: 
both its general and its specific components are liabilities. The 
general component is weaker and therefore contributes less to 
positive transfer, whereas the specific component is stronger 
and therefore contributes more to negative transfer. 

Microanalysis of Transfer 

The microanalysis provides further interpretation of the results. 
We focus on the screen-only group, since its poorer perfor- 
mance makes it a more likely victim of negative transfer. Once 
again, we proceed from coarser to finer levels of analysis.



128 The Transfer of Cognitive Skill 

LL and MT transfer 

We have pointed out previously that, using the standard goal 
tree formulation, EMACS and perverse EMACS differ in only 
their terminal nodes. In other words, both MT and LL planning 
components overlap completely, but the execution components 
are largely different. Whereas the LL execution component is 
completely different in the two editors, the MT execution com- 
ponent overlaps somewhat because insert operations make use 
of the standard alpha-numeric keys which have not been re- 
bound. Given this analysis, one would expect large and equal 
amounts of transfer in the LL and MT planning components, 
less transfer in the MT execution component, and essentially 
none in the LL execution component. Of course, if execution 
components are somehow interfering with one another, transfer 
could be negative. 

To measure LL and MT transfer, we devised a new transfer 
formula which is similar in spirit to the formula used in exper- 
iment 1. The goal once again is to measure transfer relative to 
the amount of learning that takes place with the same amount of 
practice. Since we did not make an independent assessment of 
learning in perverse EMACS, we use regular EMACS learning 
data from experiment 1 to estimate learning rates. This approx- 
imation is quite good, given the fact that the two editors are 
functionally and structurally equivalent. The new transfer score 
is given by the equation: 

_ Min(1) ZZ Moeran(") 
(4.1) To tearning ~~ M,,,,(1) x7 x 100 
  

As in equation (3.2), the numerator represents the speedup due 
to transfer, and the denominator the speedup due to learning. 
The day 1 learning mean (M,,,(1)) is taken from the screen-only 
group’s performance on day 1 of the experiment. To calculate 
the speedup due to learning, we multiply this mean by a frac- 
tion r, which represents the proportion of speedup observed in 
experiment 1 for the component in question. In this way, the 
learning baseline is supplied by the screen-only group, but 
learning rates are supplied by experiment 1. This allows for a 
more sensitive within-subjects measure of transfer, which be- 
haves identically to the between-subjects measure used in ex- 

periment 1. 
Table 4.2 presents LL and MT transfer scores for both plan- 

ning time and keystrokes. Our predictions concerning LL and



Negative Transfer 129 

Table 4.2. LL/MT transfer from EMACS to perverse EMACS. 
  

  

Measure Locate line Modify text 

Planning time (sec.) 

M,ran(3) 16.0 17.7 

M,,n(1) 29.4 34.8 

r .67 78 

Te tearning (equation 4.1) 68% 63% 

Number of keystrokes 

Mran(3) 10.7 20.8 

M,,n(1) 8.7 18.8 

r 10 17 

Tetearning (equation 4.1) — 234% — 61% 

  

MT transfer are largely confirmed. Planning time transfer is 
substantial (an average of 66 percent) and virtually identical for 
LL and MT components. Keystroke transfer (namely execution 
component transfer) is much less than planning time transfer, 
and LL is much worse than MT. Most striking is that the key- 
stroke transfer is not small or zero but negative. On average, 
subjects strike an extra 2 keystrokes per edit on day 1 of perverse 
EMACS, compared to day 1 of EMACS on both LL and MT 
components. Thus, it appears that EMACS-specific methods are 
somehow interfering with the acquisition of new methods in 
perverse EMACS. The exact nature of this interference remains 
to be seen. 

Unit task transfer 

Although transfer at the macrolevel is overwhelmingly positive, 
we have now identified two sources of negative transfer in the 
LL and MT execution components. In this second transfer anal- 
ysis, we attempt to localize further the sites of negative transfer 
by examining individual unit tasks. The analysis is restricted to 
the MT component, since LL procedures are essentially the 
same for all unit tasks and did not differ in terms of transfer. In 
addition, the three unit tasks involving line operations are ex- 
cluded, since MT procedures for these three share nothing with 
the others and add unnecessary complexity to the analysis. 

Insert operations are identical in the two editors, but delete



130 The Transfer of Cognitive Skill 

operations are grievously different. This means that, even 

though the transfer observed in the LL and MT analysis for the 

MT execution component was negative overall, that subset of 

unit tasks involving insertion should show substantial positive 

transfer. Negative transfer should be restricted to those unit 

tasks that involve deletion. Since replacement involves both 

insertion and deletion, transfer scores for those unit tasks should 

lie somewhere between the other two. 
To dramatize further the fact that positive transfer dominates 

the planning components and negative transfer is restricted to a 

subset of execution components, we first examined MT plan- 

ning time for each time of the nine unit tasks. As expected, a 3 

x 3 ANOVA using the transfer score in equation (4.1) as the 

dependent measure yielded no main effects or interactions, 

thereby confirming that MT planning time transfer for all nine 

unit tasks was equally positive. 

When we performed the same ANOVA using keystroke trans- 

fer as the dependent measure, a main effect for editing opera- 

tion emerged (F(2,12) = 123.6, p< .001). As predicted, insertion 

operations exhibited substantial positive transfer (110 percent) 

and deletion operations exhibited massive negative transfer 

(—240 percent). Finally, replace operations were in the middle 

(—100 percent). Here is strong support for the view that dele- 

tion operations are the source of negative transfer in the MT 

execution component. 

MT methods transfer 

We now know that the acquisition of EMACS deletion methods 

somehow interferes with the acquisition of perverse EMACS 

deletion methods. Critical to the status of our identical elements 

model of transfer is the nature of this interference. In experi- 

ment 1, the one case of negative transfer was characterized in 

terms of the positive transfer of a nonoptimal method. No real 

evidence was found for procedural interference in the classic 

sense (namely slower and more errorful performance), and a 

fairly strong version of our identical elements model was re- 

tained. 
The pressing question now is whether the rather substantial 

negative transfer observed in this experiment can be similarly 

explained. To answer this question, we performed a qualitative 

analysis of the methods used for the deletion of characters, 

words, and strings in both EMACS and perverse EMACS by 

screen-only subjects on the first four days of the experiment. As



Negative Transfer 131 

shown in Table 4.1, there are four deletion operators in each 
editor: delete character marked by cursor (del-char), delete word 
marked by cursor (del-word), delete character to left of cursor 
(del-pre-char), and delete from current cursor position to the 
end of the line. This last operator will be ignored, because it was 
not used in any of the three unit tasks in either editor. Table 4.3 
shows the distribution of the remaining three operators in the 
deletion unit tasks of both editors. 

In EMACS, the operator of overwhelming preference is del- 
char (d). Subjects adjust their operator selections somewhat by 
the amount of text to be deleted, as evidenced by the increased 
use of del-word (Jd) on words and strings. However, even in the 
delete string unit task, d enjoys a 2-to-1 advantage over the more 
optimal Jd. The perverse EMACS results show that del-char (now 
bound to Je) is again the runaway favorite, but now its dominance 
is even greater. The del-pre-char operator, which played a minor 
role in EMACS, has all but disappeared in perverse EMACS. 
Interestingly, of the three deletion operators used in perverse 
EMACS, only one, Je, did not have a previous binding in EMACS. 
This is a possible reason for its enhanced role in perverse EMACS. 

Thus, it appears that negative transfer can once again be 
explained in terms of the positive transfer of a nonoptimal 
method. Transfer is negative because, whereas the use of del- 
char in EMACS involved a single keystroke, its use in perverse 
EMACS involves two (the escape key in the Je operator must be 
struck independently and therefore counts as an extra key- 
stroke). Thus, what was a nonoptimal method in EMACS be- 
comes even worse in perverse EMACS. In addition, the negative 

Table 4.3. Distribution of operators in deletion unit tasks for EMACS 
and for perverse EMACS. 
  

  

  
  

  

Operator 

EMACS Perverse EMACS 

del- _—_del-pre- del- del- _—_ del-pre- del- 
Unit char char word char char word 

task (‘d) (DEL) (Jd) (Je) (a) (‘e) 

Delete 78 16 6 97 0 3 
character 

Delete 66 22 12 81 3 16 
word 

Delete 60 10 30 75 0 25 
string 
 



132 The Transfer of Cognitive Skill 

effects of this nonoptimal method are amplified somewhat by its 
increased frequency of use. 

Simulation Models and Quantitative Predictions 

Given our development of a simulation model for EMACS, and 
given our analysis of the similarity between EMACS and per- 
verse EMACS, we find it quite easy at this point to make quan- 
titative predictions of transfer between these two screen editors. 
As before, our predictions are restricted to transfer percentages 
for LL and MT planning times. In addition, we focus solely on 
the first transition between perverse EMACS and EMACS for 
the screen-only group, since this represents the cleanest transfer 
situation in our experiment. 

To recap our task analysis of EMACS, a total of 26 and 25 rules 
are used in the LL and MT planning components, respectively. 
Of the 26 rules in the LL component, six are general to all 
editors, and 20 apply only in EMACS. Of these 20 rules, only six 
pertain to the actual retrieval of EMACS-specific command bind- 
ings, and the rest are shared by both EMACS and perverse 
EMACS. As an example of an LL rule that is used in EMACS but 
not in perverse EMACS, the following rule retrieves the binding 
for the operator that moves the cursor ahead one character: 

forward-character-EMACS 

IF the goal is to specify the command symbol 
and the operator is forward-character 

THEN set as a subgoal to type f. 

In contrast, the LL rules common to both screen editors include 
rules for choosing among the various LL operators (such as 
forward-word, backward-word, beginning-of-line) and special- 
case rules for stopping in position, depending upon the direc- 
tion of movement. This example of a shared rule selects the 
forward-word operator: 

choose-forward-word-Screen 

IF the goal is to move horizontally on a line 
and the cursor is to the left of the modification 
and one or more words separate the cursor and the 

site of the modification 
THEN choose the forward-word operator. 

Once this rule fires, a separate rule retrieves the command sym- 

bol associated with the forward-word operator. Once again,



Negative Transfer 133 

these rules are different in the two screen editors, since forward- 

word is Jb in EMACS and 7 in perverse EMACS. Thus, as we 

have stated repeatedly, the two screen editors are identical in 

terms of their internal goal structures and differ simply in terms 
of their leaf nodes. 

Of the 25 rules used for MT, three are general to all editors, 18 
apply in both screen editors, and only four are specific to 
EMACS. Once again, these four rules pertain to the retrieval of 
the bindings for the four deletion operators in EMACS. MT rules 
shared by the screen editors concern the selection of MT meth- 
ods and also the management of space. As an example of the 
former type, this rule selects the delete-word operator: 

choose-delete-word-Screen 

IF the goal is to delete text 
and the deletion spans a single word 

THEN use the delete-word operator. 

As an example of the latter type, the next rule checks for a lack 
of space between words following an insertion: 

insert-space-between-words-Screen 

IF the goal is to check for space following an insertion 
and the cursor is positioned on an alpha-numeric 

character which marks the beginning of a word 
and the character to the left is not a space character 

THEN _hit the space bar. 

Table 4.4 summarizes the number of rules in each category and 

Table 4.4. Categories of rules and their frequencies in the screen 

editor simulations. 
  

  

Component Category Number of rules Total frequency 

LL General 6 96 

Screen 13 89 

EMACS 7 62 

Perverse EMACS 7 62 

MT General 3 32 

Screen 18 70 

EMACS 4 18 

Perverse EMACS 4 18 
 



134 The Transfer of Cognitive Skill 

their total frequencies. Applying equation (3.3), we find that our 
predicted transfer for LL and MT from EMACS to perverse 
EMACS is 75 percent and 85 percent, respectively. Interestingly, 
the transfer we observed was only 68 percent and 63 percent, 
respectively. Thus, we have overpredicted the amount of trans- 
fer between these two editors. This contrasts sharply with the 
eight cases of underprediction in the first experiment. It is 
tempting to conclude that here in the quantitative analysis is our 
first evidence, however slight, of true procedural interference 

between the screen editors in the planning components. We 
discussed how true procedural interference might be produced 
by interference in pattern matching. This is negative transfer 
only in the relative sense, however. The overwhelming effect is 
positive, just not as positive as we had predicted. 

Summary of Text-Editing Experiment 

At the aggregate level, the transfer observed in this experiment 
was overwhelmingly positive. Subsequent microanalyses iden- 
tified the planning components as a major source of positive 
transfer, which corresponds to our production rule analysis of 
the skill. Negative transfer was restricted to the deletion com- 
ponents, where a nonoptimal method was imported from the 
training editor. Thus, our analysis of negative transfer as the 
positive transfer of nonoptimal methods is largely supported. 

Negative Transfer in Programming 

Given our claim that negative transfer is largely restricted to 
nonoptimal methods, we might reasonably ask how it is possi- 
ble to observe negative transfer at the aggregate level. The mag- 
nitude of the negative effect is determined by the centrality of 
the productions which implement the nonoptimal methods. 
Negative transfer at the aggregate level is possible when non- 
optimal productions fire high in the goal tree and force a par- 
ticularly bad decomposition of the task. An experiment by 
Kessler and Anderson (1986) found just this phenomenon in the 
domain of programming. 

The Kessler and Anderson experiment represents one of the 
few well-documented instances of negative lateral transfer at the 
aggregate level. It involves learning to program recursively ver- 
sus iteratively. Kessler and Anderson studied this phenomenon 
in a LISP-like language, but it has been studied in other pro- 
gramming languages as well (Anzai and Uesato, 1982; Kurland



Negative Transfer 135 

and Pea, 1983). The basic result is that, while there is large 

positive transfer from iterative programming to recursive pro- 
gramming, there is negative transfer in the opposite direction. 
This phenomenon was first noted by Anzai and Uesato (1982), 

but they concentrated on the asymmetric property of the trans- 
fer rather than on the negative property. The analyses devel- 
oped by Kessler and Anderson explain both. 

Kessler and Anderson first taught subjects the basics of a 
LISP-like laboratory language called SIMPLE (Shrager and Pirolli, 
1983). Subjects then learned the more advanced programming 
techniques of recursion and iteration. One experimental group 
was trained on recursion and transferred to iteration; another 
was trained on iteration and transferred to recursion. Two con- 
trol groups programmed with either recursion or iteration in 
both training and transfer phases. The problems that all groups 
saw were identical; all that differed was the method specified for 
solution. 

Table 4.5 shows the results in terms of mean time to solve a 
problem. To calculate transfer from these scores, we use the 
following formula, which is a simple variation of the standard 
formula: 

Ai — 

(4.2) Te learning - ae x 100 

As an example, to measure transfer from iteration to recur- 
sion, we set A, as the average of experimental and control 
groups doing recursion in the first phase (no experimental 
difference between these subjects yet), E, as the second phase 
performance of experimental subjects who transfer from itera- 
tion to recursion, and C, as the second phase performance of 
control subjects who do recursion throughout. We can simi- 
larly design a transfer measure for subjects who transfer in the 

Table 4.5. Mean time (sec.) to finish a problem in the Kessler and 
Anderson (1986) experiment. 
  

  

Condition Training Transfer 

Recursion-recursion 547 392 

Recursion-iteration 530 576 

Iteration-recursion 546 368 

Iteration-iteration 482 277 
 



136 The Transfer of Cognitive Skill 

opposite direction. With this measure, the average transfer ob- 
served from iteration to recursion was a positive 67 percent, 
while the average transfer from recursion to iteration was a 
negative 20 percent. 

This aggregate negative transfer is quite dramatic, given the 
fact that the processes of writing iterative and recursive pro- 
grams share components. The positive transfer from iteration to 
recursion is testimony to this fact. To explain the negative trans- 
fer in the opposite direction, Kessler and Anderson took proto- 
cols of subjects in the two experimental conditions. They found 
that subjects transferring from iteration to recursion developed 
a reasonable understanding of iteration and were able to use it 
as a basis for understanding recursion. In contrast, subjects who 
started with recursion never understood it and adopted a strat- 
egy of memorizing examples and using analogy to extend them. 
They carried this memorization strategy over to the iteration 
problems where it is definitely nonoptimal because iterative 
constructs tend to be rather complicated syntactically. In sup- 
port of this interpretation, Kessler and Anderson found that 
subjects who transferred to iteration from recursion made over 
three times as many references to the examples as those subjects 

who started with iteration. 
Thus, the negative transfer from recursion to iteration is 

apparently due to the perfect transfer of a nonoptimal, rote 
learning strategy. This results in negative transfer at the ag- 
gregate level because the selection of a learning strategy exerts 
a major influence on problem decomposition and is critical to 
overall task performance. It is not surprising that, when faced 
with a difficult task like recursion with little preparation, nov- 
ice programmers adopt a rote learning strategy. As in the clas- 
sic studies by Wertheimer (1945), Katona (1940), and Judd 

(1908), this rote strategy emerges as a liability primarily in 
transfer situations. 

Work by Schoenfeld (1983) suggests that a poor overall ap- 
proach to a task may stem less from purely cognitive factors and 
more from students’ attitudes and beliefs about their own abil- 
ities. For example, students with math anxiety may adopt a rote 
learning strategy even in those situations where the mathemat- 
ical material is well within their grasp. Although we have no 
reason to suspect that affective factors such as these were at play 
in the Kessler and Anderson experiment, it is quite possible that 
in many training situations such factors play an important role 
and may account for what is commonly perceived as negative 
transfer.



Negative Transfer 137 

Conclusion 

In general, the results of our analyses of negative transfer are 
extremely supportive of our identical productions model. All 
sustained cases of negative transfer seem to be explainable in 
terms of the positive transfer of nonoptimal methods. In the two 
experiments where this issue was explored in detail, ours and 

that of Kessler and Anderson, we were able to find independent 

converging evidence for this position. The text-editing studies 
have also shown that dominant methods become even more 
dominant in transfer situations. This means that if a method is 
nonoptimal in a transfer task, the resulting negative effect will 
be amplified. 

The aggregate positive transfer in the text-editing experiment 
is our strongest evidence yet for the identical productions model. 
We took what would have been a massively interfering condi- 
tion in verbal learning and found massive positive transfer. 
Studies of declarative memory have shown that the retrieval of 
facts is made slower and more errorful in such experimental 
situations. Nowhere in our microanalyses, however, do we find 
evidence for this kind of interference in the execution of key- 
strokes. All results point to the fact that the nonoptimal produc- 
tions are firing in the transfer editor with no performance deficit. 
Indeed, the only sign of procedural interference of any kind was 
the slight overprediction of positive transfer based on our sim- 
ulation model of text editing. Nonetheless, the level of observed 
transfer was massively positive. The fact that declarative inter- 
ference is well documented but that procedural interference is 
not suggests another possible distinction between these two 
types of knowledge.



5 / Use Specificity of 
Procedural Knowledge 

()"" analysis of transfer has mainly focused so far on show- 
ing the high degree of transfer that occurs when training 

and transfer skills share an abstract structure, as was the case in 

the transfer observed between text editors. The text-editing re- 
sults can be taken as evidence for a more abstract interpretation 
of an element than was the case in Thorndike’s theory. These 
abstract elements can serve as the basis for substantial transfer, 

even when a superficial analysis of similarity yields no common 
elements. Yet the identical productions model places clear re- 
strictions on the kinds of transfer that can take place, and ina 

sense it shares much of the specificity of Thorndike’s model. 
This is due to the fact that skills using knowledge in one way 
share no elements with skills using the same knowledge in a 
different way. For instance, we would predict no transfer from 
a production system embodiment of English syntax for compre- 
hension to a production system embodiment of English syntax 
for generation. Although an abstract characterization of the syn- 
tactic knowledge underlying competence is the same in compre- 
hension and generation (Chomsky, 1965), the knowledge is 
organized differently in the productions for the two tasks. For 
comprehension, the productions examine strings of words on 
the left-hand sides and generate conceptual structures on the 
right-hand sides. For generation, just the opposite is true. 

In the case of natural language, it is both questionable whether 
production systems are the right formalism for the task and 
difficult to put the lack of transfer hypothesis to test. One cannot 
easily do controlled experiments in this domain. There are abun-



Use Specificity of Procedural Knowledge 139 

dant claims to the effect that people can comprehend a second 
language but not produce it. However, the degree to which 
comprehension is achieved in these cases through the use of 
extralinguistic cues is never clear. In the domain of child lan- 
guage, it is generally observed that there is improvement in both 
comprehension and generation, with generation appearing to 
lag behind (Huttenlocher, 1974; Rescorla, 1980). This relative 

independence faintly suggests that comprehension and gener- 
ation may involve separate systems. However, the apparent 
disadvantage of generation may again reflect use of extralinguis- 
tic cues in comprehension. 

The observation that children generally proceed through sim- 
ilar developmental sequences in both comprehension and gen- 
eration might be interpreted as evidence against the use 
specificity view. Or the correlated order of appearance of syn- 
tactic structures may simply reflect frequency of exposure in the 
environment and relative complexity of the structures. 

Although it is difficult to reach definitive conclusions in such 
a complex domain, the scant experimental evidence suggests 
that language comprehension and generation are at least some- 
what dissociated (for a review, see Clark and Hecht, 1983). In 
one study, Goldin-Meadow, Seligman, and Gelman (1976) asked 
two-year-old children to respond to spoken words by choosing 
their referents from a set of pictures (the comprehension task). 
The children were also shown the pictures in isolation and asked 
to name them (the generation task). The surprising result was 
that the children displayed different vocabularies in the two 
tasks. For example, a child might successfully select a picture of 
a dog in response to the word dog, but only produce the word 
woof-woof when shown the picture. It is not uncommon for chil- 
dren to comprehend “adult’’ words but produce “baby’”’ words 
in this way. 

In a related study, Thomson and Chapman (1977) found that 
children sometimes use the same words in different ways in the 
two modes. For example, children may consistently choose the 
appropriate referents for words like dog and ball in the compre- 
hension task, but overgeneralize the words in the generation 
task, such as calling all animals dog and all spherical objects ball. 
Similarly, Karmiloff-Smith (1977) found that young French- 
speaking children take one meaning of the word same (méme) in 
comprehension (same kind) but take another in generation (same 

one). All of these results suggest that word usage and semantics 
are somewhat dissociated in the two systems. 

For further evidence in the area of syntax, Schustack (1979)



140 The Transfer of Cognitive Skill 

looked at children’s ability both to recognize irregular past-tense 
inflections and to generate them. She found no correlation be- 
tween mastery of inflections in the two modes. 

One last bit of evidence is drawn from the study of brain- 
damaged patients, whose systems of comprehension and gen- 
eration have been radically dissociated through some type of 
physical trauma. In these patients, it is possible to observe 
something that is never observed in the course of normal lan- 
guage development: generation ability in the absence of com- 
prehension ability. For example, in a rare disorder called word 
deafness, a patient with normal hearing cannot understand 
speech but nonetheless can speak fairly fluently (Brain, 1965; 
Rubens, 1979; Damasio, 1981). In another rare disorder called 

alexia, or word blindness, a patient can write but not read 
(Geschwind, 1972). Clear cases of these disorders are hard to 

find because the kinds of severe brain traumas that cause them 
typically impair the functioning of all systems. Nonetheless, 
their rare occurrence is further evidence for the use specificity of 
linguistic knowledge. 

Use Specificity in Calculus 

In searching about for a domain in which to put this hypothesis 
about the use specificity of production-based transfer to careful 
experimental test, we hit upon freshman calculus. In a typical 
calculus course, students learn skills associated with integration 
and skills associated with differentiation. Both of these skills are 
based on the same abstract knowledge of calculus. Thus, as a 
test of the use specificity hypothesis, we can determine whether 
integration practice transfers to differentiation. Our prediction, 
as always, is that transfer should be limited to the production 
rules (if any) shared by the two tasks. We can also divide the 
problem-solving skill into components associated with the plan- 
ning (selection and sequencing) of calculus operators versus the 
actual application of those operators. Again, we can ask whether 
planning transfers to application or vice versa. 

Unlike natural language, calculus has the strategic advantage 
of being a skill we can teach fairly quickly to relatively tractable 
high-school populations. In our experiments, we taught stu- 
dents to solve standard related-rates word problems for differ- 
entiation and a variation of these that we invented for 
integration. The calculus-based paradigm turns out to be the 
paradigm that finally exposed some flaws in the identical pro- 
ductions model of transfer. Before describing an experiment



Use Specificity of Procedural Knowledge 141 

testing the use specificity of procedural knowledge hypothesis, 

we will first briefly describe the problem-solving domain and a 
minimal computer tutor that we used to collect data. 

Solving Related-Rates Word Problems 

Related-rates word problems are typically the first type of word 
problem encountered in calculus and are usually presented in 
one of the first few chapters of an introductory calculus text. To 
solve them, one needs to know just a few simple differentiation 

techniques and also how to apply the chain rule, a technique 
that produces new derivatives not by differentiation but rather 
by the composition of existing derivatives. Since calculus builds 
on earlier mathematics courses, it is also necessary to know the 
standard equation manipulation routines of basic algebra (poor 
mastery of prerequisite algebra knowledge was in fact a major 
stumbling block for some of the students observed). Typically, a 
related-rates problem states a couple of relationships between 
several variables and asks the student to find the rate of change 
of one variable with respect to another. Finding this derivative 
often involves differentiating equations and perhaps chaining 
them together. For example, a related-rates problem drawn from 
the related-rates tutor used in the first calculus experiment is: 
“The economy of the newly founded republic of San Pedro is 
growing such that, in any year y, the level m of the money 
supply in billion dollars is 2 times the square of the number of 
years elapsed. The gross national product g of the economy is 4 
times the money supply. How fast is the gross national product 
growing when y equals 2 years?” For this problem, one would 
write the equations: 

(5.1) m = 2y? 

(5.2) 9 = 4m 

(5.3) y = 2 

The goal of this problem is to find a value for dg/dy (the growth 
of the gross national product, or GNP, with respect to time) 
when y equals 2. One strategy for finding dg/dy is: 

(5.4) dm/idy = 4y (differentiate equation 5.1) 

(5.5) dgldm = 4 (differentiate equation 5.2) 

(5.6) dg/dy = 16y (apply the chain rule to equations 5.45.5) 

(5.7) dgidy = 32 (evaluate equation 5.6 with equation 5.3)



142 The Transfer of Cognitive Skill 

This is the first and arguably the easiest problem given by the 
tutor. It is easy because the equations derived from the prob- 
lems statement are differentiated and chained together to pro- 
duce the solution in a very straightforward way. However, some 
problems require a fair amount of search once the equations 

have been written. 
To do a systematic investigation of problem solving in this 

domain, it is necessary somehow to restrict the class of problems 
to allow for a formalization of the problem space. Consequently, 
it was decided that the problems would have these fixed features: 

1. Three variables, referred to generically as x, y, and z. The 
value of the z variable is always given. 

2. Two relations, one between x and y, the other between y 
and z. Each relation can be stated either as a regular equation 
(for example, x = 3y*) or as a derivative (for example, dx/dy = 
6y). These relations can also be stated either with x in terms of 

y (forward direction) or with y in terms of x (backward direc- 

tion). By crossing these two binary features, each relation can 
take on four possible forms. Given two relations, this means a 
total of 16 possible initial states for the problems. 

3. A goal, to find the value either of the x variable (an inte- 

gration goal) or of dx/dz (a differentiation goal) for a particular 

value of z. These goals were so named because, in most cases, 

finding a value for x involves integration and finding a value for 
dx/dz involves differentiation. Crossing the 16 initial states by 
these two goals yields a total of 32 problems. 

When the preceding related-rates problem is viewed in this 

framework, g stands for the x variable, m for the y variable, and 

y for the z variable. The initial state contains two regular equa- 
tions, both in the forward direction (g in terms of m, and m in 
terms of y). The goal is to find the value of dg/dy when y equals 
2 and is therefore a differentiation goal. 

As a further expansion, eight different cover stories were 

generated for the 32 deep structures. Four cover stories are from 

the domain of solid geometry and involve squares, cones, ici- 
cles, and ladders whose dimensions (the x and y variables) are 
changing with time. The remaining four are from the domain of 
economics and involve the growth of the GNP, profits, prices, 
and unemployed workers. The related-rates problem given pre- 
viously is an example of the economics GNP cover story. 

In the formalization of the problem space, it was also deter- 
mined that, for solving such problems, seven mathematical op- 

erators were sufficient:



Use Specificity of Procedural Knowledge 143 

1. Differentiate. This operator takes a regular equation stating 
x in terms of y and produces the derivative dx/dy. 

2. Integrate. Takes the derivative dx/dy and produces a regular 
equation stating x in terms of y. 

3. Apply Chain Rule. Takes two derivatives, dx/dy and dy/dz, 
and produces a third, dx/dz. 

4. Substitute Equations. Takes two regular equations, x in terms 
of y and y in terms of z, and produces a new equation stating x 
in terms of z. 

5. Flip Derivative. Takes the derivative dx/dy and produces the 
derivative dy/dx. 

6. Restate Equation. Takes a regular equation stating x in terms 
of y and transforms it into an equation stating y in terms of x. 

7. Evaluate. Given an equation stating either x or dx/dz in 
terms of z, and a value for z, returns the value of x or dx/dz, 
respectively. 

Unlike typical related-rates problems found in most introduc- 
tory calculus textbooks, the problems studied here require not 
only differentiation but sometimes integration as well. Integra- 
tion is necessary whenever the initial state contains derivatives 
and the goal is to find the value of a variable. Similarly, differ- 
entiation is required whenever the initial state contains regular 
equations and the goal is to find the value of a derivative. The 
latter situation is the one normally found in textbook related- 
rates problems. 

The calculus operators can be grouped into pairs according to 
the kinds of transformations they achieve. The first pair, differ- 
entiate and integrate, changes the type of the relation, either 
from derivative to regular equation or vice versa. The second 
pair, apply chain rule and substitute equations, puts previously 
unassociated variables in direct relation to one another. The 
third pair, flip derivative and restate equation, changes the di- 
rectionality of the relation. The only difference between mem- 
bers of these pairs is that one operates on derivatives and the 
other operates on regular equations. The one operator that has 
no partner, evaluate, happens to take both derivatives and reg- 
ular equations as operands. 

The Related-Rates Tutor 

To help collect data, we wrote a bare-bones tutor for these 
problems. The tutor is written in INTERLISP and runs on the 
Xerox Dandelion series. Figure 5.1 shows the basic goal struc- 

 



144 The Transfer of Cognitive Skill 

Solve problem 

fo \ 
Translate Search 
equations for solution 

Select Apply 
operator operator 

Figure 5.1. Upper-level goal structure for solving related-rates problems. 

ture for solving related-rates problems, to which the interface of 
the tutor was designed to correspond. First, students translate 
the problem statement into a set of equations. They then alter- 
nate in the selection and application of operators until a solution 
is found. The interface is designed to separate out these various 
components of problem solving so that their acquisition and 
transfer can be traced independently. 

Figure 5.2 shows the layout of the screen as it appears to a 
student solving problems. The screen consists of four windows 
and one menu, with these functions: 

1. Problem Statement Window. Displays the text of the word 
problem. 

2. Student Workspace Window. Displays student input as it is 
typed. Students must input both the equations derived from the 
problem statement during the translation phase and the results 
of operator applications during the solution phase. 

3. Equations So Far Window. Displays a running record of all 
relations generated during the course of problem solving. Rela- 
tions are displayed from top to bottom in the order they are 
generated. 

4. Prompt Window. Displays the tutor’s instructions and feed- 
back to the student. 

5. Operations Menu. Displays the seven operators available to 
students during the solution phase. To initiate an operator ap- 
plication, the student first selects an operator from the menu



145 Use Specificity of Procedural Knowledge 

‘aonfaajui 
404n} 

snjngqvo 
fo 

u
o
w
a
n
8
y
u
o
>
 

“zg 
amB1q 

 
 
 
 

J
O
V
d
S
H
Y
H
O
M
 
L
N
A
G
N
L
S
 

 
 

   

N
O
I
L
V
u
¥
a
d
O
 
L
Y
O
S
V
 

BM A
R
E
 

hS 

   

      

 
 

Y
¥
O
L
N
L
 
W
O
Y
S
 
d
1
3
H
 

 
 

 
 

 
 

 
 

 
 

 
 

 
   

    
  

  
  

} 
» 

8p 
= 

Ip/dp 
SaLVNIVAS 

(
Z
L
i
«
p
e
-
d
 

éspuosas 
N
O
I
L
V
N
O
A
 
3LVLS3uY 

Zz sjenba 
} uaym 

Bujmoi6 
sajawpad 

ayy 
S
A
I
L
V
A
I
N
S
C
 

ditd 
é¢ 

=
]
 

S} 
JSC} 

M
O
H
 

“APIS 
3y} 

S
a
w
 

py 
S| 

osenbs 
J
L
N
L
I
L
S
E
N
s
 

S
e
p
=
d
 

24) 
JO 

d 
sajaused 

ayy 
‘pasdeja 

spuoces 
- 

jO 
Jaquinu 

ayy 
JO 

auenbs 
ayy 

s
a
u
)
 

9 
S| 

T
I
N
Y
 
N
I
V
H
D
 
A
l
d
d
V
¥
 

Z
L
i
y
e
 
g
a
s
 

SSyou! 
Ul 

apis 
@ 

yO 
Ss 
Y
H
u
s
;
 

ou) 
‘3 
a
U
)
 

A
L
V
Y
D
S
L
N
I
 

Aue 
ye 

e
u
)
 

yons 
B
u
j
m
o
6
 

s} 
auenbs 

y 
J
L
V
I
L
N
S
Y
3
4
5
I
0
 

O
l
I
L
V
H
A
d
O
 

Y
V
4
 

O
S
 
S
N
O
I
L
V
N
O
D
A
 

I
N
A
W
S
A
L
V
L
S
 
W
3
1
8
0
O
u
d
 

u
o
l
e
s
a
d
o
 

ue 
yoa]aSg 

 
 Xe) LUI y VW 

keleereprs|



146 The Transfer of Cognitive Skill 

with a mouse and then selects the operands from the Equations 

So Far window (apply chain rule, substitute equations, and 

evaluate require two operands). The student is then prompted 

to write the result of the operator application in the Student 

Workspace window. 

At the beginning of each problem, the text of the word 

problem appears in the Problem Statement window, and the 

Equations So Far window is blank. The student's first task is 

to write the three relations based on the text of the problem. 

As each relation is written, it is checked and, if correct, dis- 

played in the Equations So Far window (the tutor is accurate 

at recognizing paraphrases of relations and reduces all student 

input to a canonical form). Students get two attempts to write 

each relation. After mistakes, students get the negative feed- 

back “Sorry, the tutor does not recognize (echoes student in- 

put) as correct. Please try again.” The tutor reveals the correct 

relation in the Equations So Far window if students are unsuc- 

cessful after both attempts. 
Once the problem has been set up, students begin the solu- 

tion phase by selecting an operator and its operands. Once an 

operator has been selected, students get two attempts to write 

the correct result of its application in the Student Workspace 

window, as in the setup phase. Once again, they receive mini- 

mal feedback after wrong answers and are given the right an- 

swer after two unsuccessful attempts. After repeated operator 

selections and applications, students eventually reach the goal, 

at which point they are interrupted by the tutor and informed of 

their success. 
Although by and large the tutor allows free exploration of 

the problem space, there are a few restrictions. First, the tutor 

blocks illegal operator applications and provides the feedback: 

“Sorry, that operator does not apply to that (those) equa- 

tions(s). Please make another selection.” Operator applications 

are illegal if the operands do not meet certain preconditions; 

for example, flip derivative requires a derivative as an oper- 

and, and apply chain rule requires two derivatives of the gen- 

eral form dx/dy and dy/dz. Second, the tutor blocks higher- 

order differentiation; that is, one cannot differentiate a 

derivative (students are not taught anything about higher- 

order differentiation, and higher-order derivatives are in no 

way required for the solution of these problems). Third, oper- 

ator applications performed previously are blocked with the 

message: “You already have the result of that operation. It is



Use Specificity of Procedural Knowledge 147 

(echoes previous result).” Finally, exploration of the problem 
space is restricted once students have derived the relation that 
states the unknown, sought-after quantity in terms of the 
known quantity, which is invariably one or two steps from the 
goal. At this point, students are focused on further transfor- 
mations of this relation and are unable to regress. This restric- 
tion was added to prevent total flailing in the problem space 
and in fact was hardly ever invoked. 

Aside from the seven operators, two additional selections 
are available to students in the Operations menu. One is a 
help facility, which, if selected, provides students with the 
next step along the optimal solution path from any point in 
the problem space. The nature of this help is quite minimal; 
the operator and operands are provided, but nothing else. No 
attempt is made to explain or justify the proposed operator 
application. After receiving help in operator selection, stu- 
dents are still required to apply the operator themselves and 
type the result in the Student Workspace window. The final 
selection is an abort operation facility, whereby students can 
abandon particular operation selections if deemed unprofitable 
at midstream. 

In summary, the tutor is designed to facilitate the indepen- 
dent measurement of the acquisition and transfer of the major 
components of related-rates problem-solving skill: translation of 
equations, selection of operators, and application of operators. 
During the course of problem solving, the tutor provides mini- 
mal feedback on incorrect translations, incorrect operator appli- 
cations, and illegal or poor operator selections. Furthermore, the 
tutor can provide optimal moves to students if they are in need 
of assistance. This keeps students moving and allows for suc- 
cessive approximations to the target skill. It is also useful for 
modeling purposes to see where students need help and if and 
how they profit from it. 

Method 

Subjects 

Subjects were 36 high school juniors and seniors from a local 
private girls’ school. All subjects were either taking trigonome- 
try or precalculus concurrently with the experiment and were 
maintaining a B average or better. None of the subjects had had 
any direct calculus instruction. For example, none of them had 

yet learned about limits or derivatives.



148 The Transfer of Cognitive Skill 

Design 

We set out to provide training to subjects on different types of 
problems and then measure transfer to a new type. As men- 
tioned previously, we had developed four major clases of prob- 
lems by crossing type of cover story to be translated (geometry 
vs. economics) with type of goal to be solved (differentiation vs. 
integration). It is possible to degrade these problems and create 
new classes by omitting either the translation phase or the so- 
lution phase, or both. This yields nine sets of problems in all, 
derived by crossing type of translation practice (geometry, eco- 
nomics, or none), with type of solution practice (differentiation, 
integration, or none). In those problems with no solution com- 
ponent, subjects are still given practice in applying operators 
drawn from the optimal solution path. Therefore, a more accu- 
rate description of the no-solution problems might be no- 
operator-selection problems. 

Figure 5.3 shows that, given the nine problem types, the 
experiment falls neatly into a 3 x 3 between-subjects design. 
Subjects spend two days solving problems with the tutor. On 
day 1, subjects solve problems from one of the nine classes. On 
day 2, they transfer to a particular type, specifically those prob- 
lems involving a geometry cover story and a differentiation goal 

(the choice of geometry differentiation problems as the transfer 
task was somewhat arbitrary, although problems of this type 
were identified as most representative of related-rates problems 
in textbooks). The group that receives two days of practice on 

Goal type 

differentiation integration none 
  

geometry 

  

Cover economics 
story 

  

none           
Figure 5.3. Design of calculus experiment 1 (all manipulations occur on day 1 of problem 

solving).



Use Specificity of Procedural Knowledge 149 

this type of problem serves as a control against which the per- 
formance of the others is judged. Given such a design, one can 
determine the degree of transfer from various combinations of 
translation task and solution goal. 

Specifically, we are interested in three questions: 

1. Does practice on one component of the skill transfer to 
another? For example, does practice on problem translation 
transfer in any way to problem solution, and vice versa? In this 
case, the identical productions model predicts no transfer, since 
no rules are shared by these skills. Similarly, the model predicts 
no transfer between operator selection and application. 

2. Within the translation component, does practice on eco- 
nomics cover stories transfer to geometry cover stories? The 
identical productions model here predicts perfect transfer, since 
problem statements from the two domains have identical syn- 
tactic structures and are parsed by identical sets of rules. 

3. Within the solution component, does practice on integra- 
tion problems transfer to differentiation problems? In this case, 
the identical productions model predicts a middling level of 
transfer, since the two types of problems share many of the 
Same operations. However, to preserve the model, we must 
show that the transfer we observe is in fact localized to these 
shared operations. 

Materials 

Unlike most experiments, no attempt was made in this experi- 
ment to counterbalance the ordering of problems across sub- 
jects. In fact, the order was fixed for all groups; that is, all 
subjects received problems defined by a particular initial state in 
the same serial position. Recall that the four types of problems 
differ only in terms of cover stories and goal states: As pointed 
out by Kieras and Bovair (1986), this kind of experimental situ- 
ation is preferable when the microstructure of learning and 
transfer across individual problems is of major interest. Such 
microeffects are lost in the “statistical stew’’ when counterbal- 
ancing for presentation orders. 

Procedure 

The experiment lasted three days, two hours per day, for a total 
of six hours. On day 1, subjects read an introductory text which 
presented in very direct terms the prerequisite calculus knowl-



150 The Transfer of Cognitive Skill 

edge for solving related-rates problems. The seven operators 
were introduced in detail, and examples were given of each. In 
addition, a solution trace was given for a typical related-rates 
problem. Following this reading of the instruction booklet, sub- 
jects worked with a stripped-down version of the tutor which 
presented a series of operator application exercises. At this time, 
a separate summary sheet was given to subjects which gave 
formulas and examples of operator applications (this sheet was 
available to subjects throughout the remainder of the experi- 
ment, although it was most useful during the first day). Subjects 
were given five practice exercises on each of the seven opera- 
tors. Exercises for the various operators were intermixed, but 
the ordering for all subjects was fixed, as with the problems. The 
exercise was displayed in the Prompt window (e.g. “Differen- 
tiate the following equation: y = 5x”), and subjects were given 
two opportunities to type the correct result in the Student Work- 
space window. In this way, the interaction was nearly identical 
to that for operator applications in the regular tutor. As such, 
these preliminary exercises provided an opportunity not only to 
practice the seven operators but also to become acquainted with 
a critical part of the interface. 

Day 2 of the experiment was the first day of problem solving 
with the tutor. The type of problems encountered by subjects 
depended upon experimental condition. On day 3 of the exper- 
iment, all subjects transferred to geometry-differentiation prob- 
lems. On both days of problem solving, subjects were first given 
a brief demonstration of how to use the tutorial interface on two 
sample problems. No explicit instruction was given on either 
translation of problem text or solution strategies. 

Results 

On days 2 and 3 of the experiment, subjects solved an average 
of 8.3 and 10.0 problems, respectively. However, we have com- 
plete data from all subjects for only the first six problems on both 
days. We therefore restrict our analysis to these first six prob- 
lems. All summary statistics reported here are based on aver- 
ages of performance on this restricted set. 

Before any substantive analyses were performed, the equiva- 
lence of the nine experimental groups was checked with a3 x 
3 ANOVA which used mean time per operator application on 
day 1 as the dependent measure. No main effects or interactions 
were found. Although no differences were found between the 
groups, further ANOVAs analyzing day 2 and day 3 data use



Use Specificity of Procedural Knowledge 151 

this day 1 dependent measure as a covariate to reduce within- 

group variability. 
The structure of the tutor’s interface allowed for the indepen- 

dent measurement of the two major components of related-rates 
problem-solving skill: translation and solution. Furthermore, the 
solution component was subdivided into its operator selection 
and operator application subcomponents. 

Translation 

Table 5.1 compares geometry and economics cover stories in 
terms of translation time per equation and percentage of incor- 
rect translations on day 2 of the experiment (the first day of 
problem solving). Analyses of covariance comparing these day 2 
means reveal no differences on either of these dependent mea- 
sures: F(1,17) = .61, p = .45 and F(1,17) = .01, p = .93 for 

translation time per equation and percentage of incorrect trans- 
lations, respectively. This result is interesting, given that the 
rules used to generate the text for both types of problems are 
identical in terms of syntax and differ only in surface content. 
Despite the syntactic equivalence, it might nevertheless have 
been suspected that the cover stories differ in difficulty because 
the geometry problems involve a spatial component not present 
in the economics problems. Others (e.g. Larkin and Simon, 
1987) have found that spatial reasoning plays an important role 
in the setup of certain types of problems, particularly those 
involving critical conservation relations not stated explicitly in 
the text. However, in the problems used here, all relations re- 

- quired are stated explicitly, so there is no real need for this kind 
of elaboration of the initial state. 

There is no effect of the problem type factor on either trans- 

Table 5.1. Translation results for both days of problem solving in the 

calculus experiment. 
  

  

Geometry Economics No 
Day Measure translation translation translation 

2 Translation time 50.9 46.6 — 

per equation (sec.) 

% incorrect 36 36 — 

3 Translation time 26.3 26.8 45.3 

per equation (sec.) 

% incorrect 21 22 40 
 



152 The Transfer of Cognitive Skill 

lation time per equation or percentage of incorrect translations 
on the first day of problem solving. This is preliminary evidence 
for the independence of the translation and solution compo- 
nents, but the transfer data should be more telling. 

Table 5.1 also presents the results from day 3 of the experi- 
ment, when all subjects are solving problems with geometry 
cover stories. Focusing first on learning, we see that those sub- 
jects who translate geometry cover stories on both days of prob- 
lem solving improve in terms of both time per equation (from 
50.9 to 26.3 seconds) and percent incorrect (from 36 percent to 21 
percent). In addition, there is virtually total transfer from eco- 

nomics cover stories to geometry cover stories in terms of both 

of these measures. This supports the position that subjects are 
learning generalized translation rules keying primarily on syn- 
tactic cues and not on specific content words. This type of trans- 
lation was in fact first proposed as an artificial intelligence 
technique by Bobrow (1964) and was later found to approximate 

human translation processes by Paige and Simon (1966). A pro- 
duction system embodiment of these translation rules would 
show near perfect transfer from one cover story to the other. 
Finally, the day 3 performance of those subjects who spend day 
2 solving problems but doing no translation is roughly equiva- 
lent to the day 2 translation performance of the regular groups. 
Thus, it appears there is very little or no transfer from the 
solution component to the translation component, as would be 
expected from a production system analysis. 

Operator selection 

Table 5.2 compares differentiation and integration problem types 
in terms of mean time per operator selection and extra moves 
per problem (relative to the optimal number) on day 2 of the 
experiment (the first day of problem solving). ANOVAs com- 
paring these day 2 means yield a main effect for extra moves 
(F(1,17) = 10.8, p < .01) but not for time per selection. This 
means that differentiation problems are in fact more difficult in 
terms of number of extra moves but not time per move. There is 
no significant effect for cover story on either dependent mea- 
sure. This is further support for the independence of translation 
and solution. 

Table 5.2 also presents the results from day 3 of the experi- 
ment, when all subjects are solving differentiation problems. 
Those subjects who solve differentiation problems on both days 
of the experiment (the learning control group) improve in terms



Use Specificity of Procedural Knowledge 153 

Table 5.2. Operator selection results on both days of problem 
solving in the calculus experiment. 
  

  

Differentiation Integration No 
Day Measure selection selection selection 

2 Time per 34.9 34.7 — 
selection (sec.) 

Extra moves 3.4 1.7 — 
per problem 

3 Time per 18.6 24.5 33.0 
selection (sec.) 

Extra moves 2.6 2.2 3.4 

per problem 
  

of both time per operator selection (from 34.9 to 18.6 seconds; 
F(1,9) = 137.7, p < .0001) and extra moves per problem (from 
3.4 to 2.6: F(1.9) = 6.0, p < .05). This reduction in extra moves 

is totally accounted for, however, in the reduction of illegal 

moves (from 1.9 to 1.1; F(1,9) = 14.9, p < .01), illegal moves 

being defined as before as those that violate the preconditions of 
the operators. Aside from the substantial speedup, learning 
seems to be of a rather trivial sort (learning the preconditions of 
the operators) as opposed to something more insightful regard- 
ing the optimal strategy for solving these problems. 

The transfer data in Table 5.2 shows that there is substantial but 
less than total transfer from integration to differentiation prob- 
lems in terms of time per operator selection. Expressed as a 
percentage of the theoretical maximum improvement observed in 
the differentiation control group (namely our standard formula), 
the savings is (34.9 — 24.5)/(34.9 — 18.6), or approximately 64 
percent. An ANOVA performed on the day 3 data yielded a main 
effect for the problem type factor (F(2,26) = 16.4, p < .001), and 
subsequent Newman-Keuls multiple-range tests revealed that all 
three selection times are different from one another (all F(24) > 
3.3, all p< .05). This confirms that integration subjects experience 
substantial but less than total transfer to differentiation problems. 
Interestingly, the integration group surpasses the theoretical 
maximum reduction in terms of extra moves and actually sur- 
passes the performance of the differentiation control. This dif- 
ference, however, is not statistically significant. 

Finally, there is virtually no transfer on either measure for the 
group that has no operator selection practice on day 2 of the 
experiment (the no goal group). This group did, however, prac-



154 The Transfer of Cognitive Skill 

tice the translation and operator application components on day 
2. This means that there is no transfer from these to operator 
selection. Thus, it apparently supports our implicit assumption 
that related-rates problem-solving skill can be decomposed into 
several totally independent parts. A similar simplifying assump- 
tion was made by Hayes and Simon (1974) in their UNDER- 

STAND model, where problem comprehension was totally 
disjunct from problem solution. 

An interesting question is what to make of the 64 percent 
transfer observed from integration to differentiation. To address 
this issue, we first look at the strategies that subjects use to solve 
the two types of problems. All the problems presented by the 
tutor give subjects the task of trying to find an equation relating 
x and z given an equation relating x and y and another relating 
y and z. Often problem solving takes the form of preparing the 
two initial relations so they can be combined properly to form 
the final relation. It is possible to characterize the strategies used 
to solve these problems by the operator (either chain rule or 
substitute equations) chosen to combine the two initial relations. 
Depending upon the initial relations, one combining operator 
may be more or less optimal than the other. For example, in the 
solution trace presented earlier, a better strategy is to substitute 
equations first and then differentiate the result rather than to 
differentiate both initial relations first and then apply the chain 
rule. It is generally the case that those initial states composed of 
regular equations favor use of the substitute equations operator 
and those composed of derivatives favor use of apply chain rule. 
This bias is somewhat modulated by the goal type of the prob- 
lem, with integration goals favoring substitute equations and 
differentiation goals favoring apply chain rule. 

Table 5.3 gives a problem-by-problem breakdown of strategies 
used on the first six problems on both days of problem solving. 
Shown is the percentage of subjects using the apply chain rule 

operator to derive the target relation (the remaining subjects are 
using the substitute equations operator). On day 2 (first day of 
problem solving), the preferred operator for solving differenti- 
ation problems is apply chain rule. However, on problems 1 and 
5 where substitute equations is optimal, subjects use apply chain 
rule on average only 52 percent of the time, as opposed to an 
average of 72 percent on other problems. Thus, initial state 
seems to.have some influence on choice of strategy. Interest- 
ingly, however, this sensitivity to initial state all but disappears 
on day 3. Those subjects who solve differentiation problems on 
day 2 use apply chain rule 87 percent of the time on day 3, for



Use Specificity of Procedural Knowledge 155 

Table 5.3. Strategy analysis. The numbers represent percent usage 
of the chain-rule strategy; S and C stand for substitution 

and chain-rule strategy, respectively. 
  

  

  

Problem 

Day Problem type 1 2 3 4 5 6 M 

2 Differentiation 50 67 80 73 «55 67 ~=65 
Optimal strategy 5S C C C S C 

Integration 0 0 0 0 0 0 0 
Optimal strategy 5 S S S S S 

3 Differentiation 82 75 100 8 100 82 87 
Integration 50 20 7 82 ~=80 50.59 
  

an increase of 22 percent. In addition, there is no difference 
between strategy choice on problems 1 and 5 and remaining 
problems. As apply chain rule becomes more dominant, a kind 
of Einstellung effect emerges as a secondary phenomenon. 

Turning to the integration problems on day 2, we see that 
apply chain rule is not used by any subject on any problem. The 
overwhelming dominance of the substitute equations operator 
on these problems has at least two possible sources: First, it is in 
fact the optimal choice on all 6 of the integration problems. 
Second, substitute equations may have some a priori advantage 
over apply chain rule because it is an operator imported from 
basic algebra and is presumably already familiar to subjects. 

Day 3 data for those subjects who solved integration problems 
on day 2 shows that use of apply chain rule is virtually identical 
to that of the differentiation control on day 2 (59 percent versus. 
65 percent). Thus, there is little evidence for the transfer of 
substantive strategic knowledge, and the 64 percent savings in 
terms of operator selection remains unexplained. 

Even though we have shown that practicing the substitution 
strategy on day 2 on integration problems has little effect on 
choice of strategy on day 3 on differentiation problems, it is still 
the case that the substitution strategy is a source of overlap for 
the two types of problems. Indeed, Table 5.3 shows that inte- 
gration subjects use the substitution strategy on a full 41 percent 
of the differentiation problems. Thus, the substitution strategy 
is still a possible source of transfer in operator selection. We 
have simply been unable to localize the effect. 

In our pursuit of an explanation for the 64 percent transfer, it 
is useful to remember that, aside from basic strategy, many of 
the same operators are selected in both kinds of problems. For



156 The Transfer of Cognitive Skill 

Table 5.4. Relationship between the frequency of selection of 
operators on day 2 and the level of transfer on day 3. The 
data are drawn from subjects who solved integration 
problems on day 2 and differentiation problems on day 3. 
Transfer is expressed in terms of time per selection and is 
based on comparisons with differentiation control 

  

  

subjects. 

Frequency of selection Transfer 
Operator (day 2) (day 3) 

Integrate 12.4 — 20% 

Differentiate 1.3 66% 

Substitute 11.6 107% 

Chain rule 1.8 65% 

Restate 11.3 84% 

Flip derivative 2.1 53% 

Evaluate 13.5 90% 
  

example, the evaluate operator is always the last operator se- 
lected in both integration and differentiation problems. If com- 
mon operator selections are indeed a source of transfer, our 
identical elements model would predict that those operators 
selected with higher frequency on integration problems would 
exhibit higher levels of transfer to differentiation problems. Ta- 
ble 5.4 provides an analysis of the operator selections made by 
our integration subjects in terms of frequency of selection on 
day 2 and percentage transfer in terms of time per selection on 
day 3. All operator selections are in fact practiced to some de- 
gree on day 2. Overall, the table shows a fairly direct relation- 
ship between frequency of use and percentage transfer, except 
for one anomolous entry: the integrate operator. Despite the fact 
that integration is one of the most frequently selected operators 
on day 2, it shows the least transfer on day 3. In fact, the transfer 
is slightly negative (—20 percent), although it may be best 
viewed as simply zero transfer. There is a good explanation for 
this, based entirely on the fact that, unlike the other operators, 

the integrate operator is properly selected under radically dif- 
ferent circumstances in the two types of problems. The follow- 
ing two production rules show the conditions for selecting the 
integrate operator in the integration and differentiation prob- 
lems, respectively:



Use Specificity of Procedural Knowledge 157 

P select-integrate-Integration-goal 

IF = equation is part of the initial state of the problem 
and =equation is a derivative 

THEN integrate = equation. 

P select-integrate-Differentiation-goal 

IF = equation is part of the initial state of the problem 
and = equation is a derivative 
and the goal is to find an equation stating =varl in 

terms of =var2 
and = equation has a variable =var3 on the right- 

hand side 
and =var3 does not equal = var2 

THEN integrate = equation. 

The first thing to notice is that these rules are quite distinct. In 
the integration problems, the integrate operator applies indis- 
criminately to all derivatives, whereas in the differentiation 
problems, it applies in only rare circumstances. Specifically, 
integration is required in only those cases where a derivative is 
stated in terms of the wrong variable, so that the chain rule is 
blocked. Thus, different rules are responsible for the selection of 
this operator in the two types of problems, and this accounts for 
the total lack of transfer. When we exclude the integrate oper- 
ator from the analysis, the correlation between frequency of 
selection on day 2 and level of transfer on day 3 is .87. This 
provides strong support for the identical elements model and 
does much to account for the 64 percent transfer observed in 
operator selection. 

Operator application 

Unlike the translation and operator selection components, all 
subjects get three days of practice on operator application. Table 
5.5 shows the results in terms of time per application for the 
three solution conditions (integration, differentiation, and none) 
on all three days. There was no effect of translation condition on 
operator application on any day, so the table collapses across 
this factor. This, by the way, is further evidence for the inde- 
pendence of translation and solution components. 

The three solution conditions are virtually identical on the 
first two days, but the integration condition lags behind some- 
what on the third (in the none condition, subjects practice the 
same operator applications as in the differentiation condition, so



158 The Transfer of Cognitive Skill 

Table 5.5. Time per operator application (sec.) on all three days of 

the calculus experiment. 
  

Solution condition 
  

  

Day Integration Differentiation None 

1 82.8 78.7 83.7 

2 40.6 43.2 43.8 

3 33.5 26.3 27.7 
  

the total transfer observed between these two conditions on day 

3 is to be expected). Expressed as a percentage of the total 
improvement shown by the differentiation control subjects, 
transfer from integration to differentiation in terms of operator 
application is (43.2 — 33.5)/(43.2 — 26.3) or 57 percent. This is in 

fair agreement with the 64 percent figure observed in operator 

selection. As before, the lack of total transfer may be attributed 

to the fact that, in the course of solving integration problems on 

day 2, subjects get most of their practice on operators that apply 

less frequently on day 3. Table 5.6 shows operator frequencies 

for integration subjects on days 2 and 3. Most of the high- 

frequency operators on day 2 (such as integrate, substitute, and 

restate) appear much less often on day 3. Once again, the iden- 

tical productions model would predict a fairly high correlation 

between frequency of application on day 2 and level of transfer 

on day 3. The correlation observed in this instance was .48, 

Table 5.6. Operator frequencies on days 2 and 3 for the integration 

subjects. On day 2, subjects are solving integration prob- 

lems; on day 3, differentiation problems. 
  

  

Operator Day 2 Day 3 

Integrate 12.4 5.2 

Differentiate 1.3 7.8 

Substitute 11.6 4.6 

Chain rule 1.8 5.2 

Restate 11.3 4.8 

Flip derivative 2.1 4.3 

Evaluate 13.5 6.8 
 



Use Specificity of Procedural Knowledge 159 

somewhat lower than the .87 observed for operator selection but 
still fairly supportive of the model. One reason for a lower 

correlation is the fact that measures of transfer in this case are 
based on transitions from the second to the third days of prac- 
tice, rather than from the first to the second, as was the case 
with operator selection. Such transitions necessarily involve less 
learning, and as a result, transfer measures tend to be less 

reliable. 

Summary of Calculus Experiment 

This experiment had three major results. First, the translation 
and solution components were shown to be totally indepen- 
dent. On day 2, translation condition had no effect on solution 

performance, and likewise, solution condition had no effect on 

translation performance. This was the first evidence that these 
were encapsulated components. More important, the transfer 
results showed that practice on translation had no effect on 
solution, and vice versa. Specifically, subjects who practiced 
solution but not translation on day 2 did no better on translation 
on day 3 than subjects with no practice whatsoever on day 2. 
Similarly, subjects who practiced translation and operator appli- 
cation but not operator selection on day 2 did no better on 
selection on day 3. This provides additional support for the 
encapsulation of translation and solution processes, and it sug- 
gests that the solution subcomponents of selection and applica- 
tion are independent as well. Since all of these components tap 
a common, abstract knowledge of calculus, this pattern of re- 

sults is the first piece of evidence for the use specificity of 
knowledge. 

Second, we observed 64 percent transfer from integration to 
differentiation in terms of operator selection, and 57 percent 
transfer in terms of application. Both of these cases are potential 
counterexamples to the use specificity principle. However, care- 
ful analysis revealed that transfer in both cases was concen- 
trated in the selections and applications shared by the two 
problem types. These results provide additional support for the 
identical productions model. 

Third, within the translation component, we observed total 
transfer from problems with economics cover stories to those 
with geometry cover stories. This suggests that subjects were 
using a generalized, syntactic parsing strategy. Ultimately, this 
result supports the view that production rules have an abstract 
quality not found in Thorndike’s elements.



160 The Transfer of Cognitive Skill 

Use Specificity in LISP Programming 

Kessler’s (1988) research is another demonstration of lack of 
transfer among different uses of the same knowledge. McKen- 
dree and Anderson (1987) had reported preliminary evidence that 
there was little transfer from evaluating LISP code to generating 
LISP code. Kessler set out to perform a more thorough analysis 
of this issue, looking at transfer relationships between not two but 
three components: generation, evaluation, and debugging. 

A loose parallel may be drawn between the coding and eval- 
uation of a programming language like LISP and the generation 
and comprehension of a natural language. In fact, this parallel 
has been drawn quite explicitly and profitably by some research- 
ers (e.g., Soloway, Ehrlich, and Gold, 1983). Thus, the results of 
experiments like Kessler’s may have some bearing on the issue 
of the use specificity of linguistic knowledge. 

In Kessler’s experiment, subjects worked with simple LISP 

functions like: 

(defun pal (x) 
(append x (reverse x))) 

This function makes a palindrome out of the items of a list. Thus 
if a user types (pal ‘(a bc) ), LISP will return (a b cc ba). This 
works by appending the list that is given with the reverse of the 

list. 
Subjects were given training on either coding, evaluation, or 

debugging. In the coding condition, subjects had to write a func- 
tion given the problem specification. Subjects were just learning 
how to write LISP functions, and so they found this a relatively 

difficult task. In the evaluation condition, they were asked to 

simulate the steps of the LISP interpreter as it stepped through 
the code. In the debugging condition, subjects were given a 
buggy version of the function and asked to correct it. For example, 
the buggy version of the pal function that Kessler used was: 

(defun pal (x) 

(list x (reverse x))) 

In contrast to the append in the correct function definition, list 

in this function definition embeds its arguments in an extra layer 
of parentheses. Thus, the preceding function would produce 
((a bc) (c ba )) rather than the desired (a bcc ba). 

Kessler gave subjects practice at either coding, evaluating, or 
debugging nine such functions. Then he looked at transfer to 
each of these three tasks using a3 x 3 factorial design. Table 5.7



Use Specificity of Procedural Knowledge 161 

Table 5.7. Raw scores and percentage transfer (in parentheses) 

between coding, debugging, and evaluation in the Kessler 
(1988) experiment. Results are expressed in terms of time 
to finish a problem (sec.) and number of errors per 

  

  

  

problem. 

Transfer 

Training Measure Coding Debugging Evaluation 

Coding time 163 (100%) 182 (81%) 358 (12%) 
errors 2.0 (100%) 2.0 (71%) 8.6 (—66%) 

Debugging time 184 (92%) 146 (100%) 336 (41%) 
errors 2.3 (90%) 1.5 (100%) 6.6 (29%) 

Evaluation time 304 (47%) 283 (25%) 231 (100%) 

errors 4.3 (23%) 3.0 (29%) 5.1 (100%) 

None time 412 329 376 

errors 4.9 3.6 7.2 
  

shows his transfer results measured in terms of mean time to 
process a function (either code, evaluate, or debug it) and mean 
number of errors. The table also shows the time it took subjects 
to do each task initially. From this data, we calculated our stan- 
dard transfer measure for each condition. The results are clear. 
There is a high level of transfer between debugging and coding 
(an average of 91 percent), but rather little transfer between 
these two and evaluation (an average of 16 percent). The lack of 
transfer to and from evaluation is additional support for the use 
specificity position, but the high level of transfer between de- 
bugging and coding is somewhat problematic and might be 
interpreted as contrary evidence. However, according to 
Kessler’s analysis, the coding and debugging tasks are not to- 
tally disjoint and in fact share a major subcomponent. In the 
debugging condition, after isolating the problem, subjects have 
to delete a fragment of the code in a structured editor and 
rewrite it. They have to write this same fragment of code (plus 
the rest of the function) in the coding condition. Thus, the 
writing of the fragment is common to both tasks. For instance, 
in our example, both coding and debugging subjects have to 
write the fragment (append x (reverse x)). The identical elements 
model predicts that transfer will be concentrated in this common 
component. If this is true, once again the principle of use spec- 
ificity will be preserved. 

Table 5.8 presents a differential analysis of the unique compo- 
nents and the common components in debugging and coding.



162 The Transfer of Cognitive Skill 

Table 5.8. Differential transfer analysis for common and unique 
components in the Kessler (1988) programming 
experiment. Results are expressed in terms of time to 
finish a problem (sec.) and number of errors per problem. 
  

  

  

Transfer 

Training Measure Coding Debugging 

Common components 
Coding time 124 (100%) 89 = (98%) 

errors 1.8 (100%) 1.1 (100%) 

Debugging time 114 (103%) 87 (100%) 
errors 1.6 (114%) 1.2 (100%) 

None time 254 176 
errors 3.2 2.7 

Unique components 
Coding time 39 = (100%) 92 (65%) 

errors 0.2 (100%) 0.9 (0%) 

Debugging time 65 (78%) 59 =(100%) 
errors 0.7 (67%) 0.4 (100%) 

None time 158 153 

errors 1.7 0.9 
  

The average transfer between debugging and coding on the com- 
mon components is 105 percent, while it is only 52 percent for the 
unique components. These results reinforce the position that the 
positive transfer seen between tasks is concentrated in the shared 
components. Of course, 52 percent is still high, but there is some 
question as to whether all the so-called unique components in 
Kessler’s analysis were really unique. For example, they included 
such shared processes as encoding the problem statement and 
using the structured editor (actually the LISP tutor). 

Conclusion 

According to experimental evidence from the domains of calcu- 
lus and LISP programming, transfer is restricted to the produc- 
tion rules shared between skills. More important, transfer is not 
based on an abstract characterization of the knowledge under- 
lying the production rules. These results are generally consis- 
tent with research on problem solving which has shown that 
skills are quite use-specific and are situated in certain contexts 

(Rogoff and Lave, 1984).



6 / Simulating Analogical Transfer 

p until this point we have been content to base our predic- 
tions of transfer on purely procedural embodiments of the 

skills under study. Our strategy has been to use production 
systems to model skilled performance and to compare production 
sets across skills. One implication of this kind of analysis is that 
two production sets based on the same abstract knowledge may 
nevertheless share no elements, because knowledge embodied as 

productions is in a sense directional and use-specific. Perhaps the 
clearest and strongest statement of this position is the largely 
untested prediction that there is no transfer between language 
comprehension and generation. However, it is certainly possible 
that, by adopting a strict production system view of transfer, we 
are glossing over some critical issues. Specifically, it may in some 
cases be necessary to consider the learning histories of skills and 
the origins of productions. According to the ACT* theory of skill 
acquisition (Anderson, 1982), productions arise from declarative 
precursors which are not committed to a specific use and are not 
specialized to a particular use. It may be that these declarative 
precursors will provide yet another basis for transfer, especially 
in those cases where compiled production sets share no elements 
yet are based on the same declarative knowledge. To explore this 
possibility, it seemed wise to produce at least one detailed sim- 
ulation of the initial stages of skill acquisition. This simulation 
differs from the previous simulations in that the early stages 
rather than the endpoint of skill acquisition is being modeled. 
One of the principle functions of creating a simulation is to check 
one’s theoretical analysis for oversights.



164 The Transfer of Cognitive Skill 

We decided to simulate problem solving in the calculus ex- 

periment. To help guide our development of a simulation 

model, we gathered verbal protocols from four additional sub- 

jects as they solved both differentiation and integration prob- 

lems with the tutor. The model is implemented in the PUPS 

production system language (Anderson and Thompson, in 

press). 

Theoretical Underpinnings 

The model draws heavily on the ACT* theory of skill acquisi- 

tion. To review, the ACT* theory breaks down acquisition into 
two major stages: a declarative stage, where a declarative rep- 
resentation of the skill is interpreted by general productions, 

and a procedural stage, where the skill is directly embodied in 

domain-specific productions. The transition from the declara- 

tive to the procedural stage is achieved by the process of 

knowledge compilation. An important recent modification to the 

theory has been the addition of structural analogy as a mech- 

anism for translating initial declarative encodings into action. 

Extensive studies of novice LISP programmers (Anderson, Far- 

rell, and Sauers, 1984; Pirolli and Anderson, 1985), as well as 

studies of subtraction and algebra instructional materials (Van- 

Lehn, 1983; Neves, 1981), have exposed the importance of ex- 

ample problems to the initial performance of a skill. Anderson 

(1986) showed how an analogy mechanism coupled with the 

standard knowledge compilation mechanisms could not only 

achieve the transition from declarative to procedural knowl- 

edge but also generalize the resultant procedural representa- 

tion. This is done by abstracting common features of the 

source and target of the analogy. In accordance with this 

ACT* formulation, the current model stresses two features, 

the initial declarative encoding of domain knowledge and the 

importance of structural analogy in both operator application 

and operator selection. 

Initial declarative encoding of domain knowledge 

A serious effort has been made to develop a truly plausible 

representation of a subject’s knowledge state at the beginning 

of related-rates problem solving. Presumably, after reading 

the instruction booklet on day 1 of the experiment, subjects 

have three types of knowledge which apply directly to the 

task:



Simulating Analogical Transfer 165 

1. Declarative encodings of the new, calculus-specific opera- 
tors such as differentiate, integrate, and apply chain rule. These 
are what subjects derive from the instruction booklet. 

2. Procedural representations of the familiar operators from 
algebra, such as restate and evaluate. Subjects learned these 
domain-specific productions in their algebra courses. 

3. General productions for performing the various weak 
methods, specifically means-ends analysis. We assume these 
productions to be part of the human cognitive architecture. 

A true test of the sufficiency of the ACT* skill acquisition mech- 
anisms would be to start with these three components and see 
whether the entire course of skill acquisition could be approxi- 
mated through practice. One of the trickier problems is to get a 
truly clean and principled separation of declarative and proce- 
dural knowledge before practice begins, especially in the weak 
methods. The overwhelming tendency when writing produc- 
tion systems simulating novice behavior is to embed too much 
knowledge in the productions themselves (that is, in compiled 
form) and not enough in declarative form. The result in most 
cases is a serious underestimation of the amount of learning that 
takes place. 

Importance of structural analogy 

The verbal protocols collected in this experiment provide further 
support for the critical role of structural analogy during the 
initial phases of skill acquisition. For example, here is an excerpt 
of a subject attempting to differentiate an equation for the first 
time (recall that the subject has a summary sheet at his side 
displaying the formula for differentiation): 

Formula: y = cx" —> dyldx =n X cx"! 

Given: m = 2y° 

Subject: Differentiate the equation m equals 2 times y to the 
third power. OK, let’s follow the ol’ formula. (Subject looks 
at summary sheet.) OK, y equals c x to the n, so you just 
take dy, which in this case is dm (subject begins typing 
answer), dm divided by, wait a minute, ah, dx, which is dy 

in this case, equals, ah, 3, which is n, 3 times c, which is 2, 

which is 6, 6 times x, which is y, 3 y to the second power, 
n minus 1 which is the second power, hit return. . . 

(Typed answer: dm/dy = 6y7)



166 The Transfer of Cognitive Skill 

Here, then, is a good example of the use of structural analogy in 
the application of operators. The mapping of elements is ex- 
plicit, and in this case it works quite well. In all of these operator 
applications, the analogy is of the form: 

formula input , . given equation 

formula output answer? 
  

A correspondence is drawn between the formula input and 
the given equation, and an answer is generated which corre- 
sponds to the structure of the formula output but uses the 
bindings from the given equation. An interesting impasse oc- 
curs when the mapping between formula input and given equa- 
tion is not obvious, as it is in this case of integration: 

  Formula: dyldx = cx" —> y= 

Given: dwi/da = 2 

Subject: OK, integrate the equation dw over da equals 2. In 
this case, you’re just working backward. Hmmm, you don’t 
really have a variable in this case, you just have dw over da 
equal to 2, and, uh, you plug in for y, which is equal to w, 
so the w, in this case, it’s w (subject begins typing), y equals, 

ah, c, which is just 2, c, over, ummm, I guess we don’t have 

a variable, so, ah, y is equal to, ah, dw over da equals 2, 
hmmm, it would be your y, which is just w, is equal to 2, c, 
which is 2, divided by n plus 1, you don’t have a variable, 
so it would be zero, and you don’t have a variable, so it 
would be to the zero power. 

n+1 

(Typed answer: w = 0) 

Of course, the actual answer here is w = 2a. What this subject 
is lacking is a method for elaborating such equations into a form 
more closely analogous to the formula input: 

dwida= 2 <> dwida = 2a° 

Without this elaboration, the subject can find no binding for the 
term ‘x to the nth power” in the formula. After floundering 
temporarily, the subject fills in a default value of 0 as a patch, 
and the resultant product is 0. This particular integration exer-



Simulating Analogical Transfer 167 

cise was in fact responsible for a large spike of errors observed 
in the integration learning curve. 

Structural analogy plays a critical role in this model not only in 
the initial application of operators but also in the planning of 
operator selections. However, the analogy mechanism currently 
does not operate at the level of adapting a worked-out solution 
to the current problem, as is done in other systems (e.g. Car- 
bonell, 1983). Rather, it plays a more low-level, but nonetheless 
crucial, role in the specification of subgoals. For example, if the 
goal of a problem is to find dp/dt, but no equation currently exists 
relating p and t, a subgoal might be set to apply the chain rule. 
The chain rule says dx/dz = (dx/dy)(dy/dz). Subgoals must be set 
to find the derivatives that, when chained together, produce 

dp/dt. But what exactly are these derivatives? This can be an- 
swered by solving the following analogy between the chain rule 
and the current situation: 

dx/dz _. apldt 

(dxidy)(dyldz) °° (?)(?) 
  

Generally, we can characterize the analogy to be solved for 
operator selection as: 

formula output .. — goal 

formula input — subgoals? 
  

So, the analogy mechanism works much like before, except that 
the reasoning is in the opposite direction. In this way, the weak 
methods are kept free of domain-specific knowledge in our sim- 
ulation. 

Operator application and subgoal planning share the same 
declarative base; that is, both operate on the declarative repre- 
sentations of the formulas. However, the compiled product sets 
for each of these processes are completely disjoint. Early prac- 
tice on one use might serve to correct or strengthen the declar- 
ative base and so facilitate early practice on the other use. Here, 
then, is a situation where a failure to consider the declarative 
component may result in an underprediction of transfer. 

Components of the Model 

The model contains the two major components of operator se- 
lection and operator application. No effort has been devoted to 
modeling the translation phase of problem solving.



168 The Transfer of Cognitive Skill 

Operator selection 

The model derives its problem-solving power from a generic 
means-end analysis engine. Means-ends analysis is a weak 
method well documented by Newell and Simon (1972) as having 
extensive psychological validity and considerable general- 
purpose computational power. Newell and Simon used this 
method extensively in their classic GPS program (Ernst and 
Newell, 1969), which has been used to simulate problem solving 
in domains like logic, cryptarithmetic, tower of Hanoi, and mis- 
sionaries and cannibals. Perhaps most relevant is the work of 
Larkin, McDermott, Simon, and Simon (1980) which docu- 

mented the importance of means-end analysis as a novice strat- 
egy for solving systems of physics equations. 

The informational demands of means-ends analysis are few: 
the system must be able to detect critical differences between the 
current state and the goal, index operators by the differences 
they reduce, and decide which difference is most important if 
more than one exists. The control structure of means-ends anal- 
ysis is simply to examine the current state and the goal, deter- 
mine the most important difference between them, retrieve an 
operator that reduces that difference, and apply it. Control flow 
is complicated by the fact that, if the chosen operator cannot be 
applied to the current state, the system recurses and attempts to 
reduce the difference between the current state and the precon- 
ditions of the operator. 

The means-end analysis engine developed here has four dif- 
ference detectors, one for recognizing that no relation currently 
contains the two variables contained in the goal relation (a con- 
tains difference), another for recognizing that the current rela- 
tion is of a different type (derivative versus regular equation) 
than the goal relation (a type difference), a third for recognizing 
that the current relation is stated backward relative to the goal 
relation (a directionality difference), and a fourth for recognizing 
that a value has not been computed for the goal relation (a value 
difference). These four seem to be plausible rules that the stu- 
dent would have learned from prior algebra courses. The one 
difference detector for which this might not be apparent is the 
type difference, which detects differences between regular and 
derivative expressions. However, high school algebra involves 
numerous types of expressions which must be discriminated, 
such as quadratic versus factored equations and proper versus 
mixed fractions. The rank ordering of differences, which is re- 
quired for means-end analysis in its classic conception, is some-



Simulating Analogical Transfer 169 

what problematic in this instance. We could find no a priori 
mathematical knowledge upon which our novices could rank 
order differences. However, all of our subjects had one day of 
operator application practice prior to problem solving and could 
presumably rank order the operators in terms of difficulty. Thus, 
our proposed control structure is: 

1. Detect all differences between the current state and the 
goal state of the problem. Among all the operators that apply 
directly and reduce one of these differences, choose the operator 
that is easiest to apply. 

2. If no operators apply directly, choose an operator whose 

preconditions are most closely matched. In other words, choose 
the operator that requires the fewest subgoals to be satisfied. 

The second feature concerning the minimization of subgoals is 
consistent with the behavior of the physics novices observed by 
Larkin, McDermott, Simon, and Simon (1980). Such a control 
structure provides a combination of working forward and work- 
ing backward which is characteristic of means-end analysis 
(Newell and Simon, 1972). 

The operators pair off quite nicely in terms of the differences 
they reduce. Apply chain rule and substitute equations reduce 
the “contains” difference, differentiate and integrate reduce the 
“type” difference, flip derivative and restate reduce the ‘‘direc- 
tionality” difference, and evaluate reduces the “‘value’’ differ- 
ence. Discriminations between the two members of a pair are 
often made on the basis of goal information. In other words, if 
the goal is a derivative, apply chain rule is the operator of choice 
when a “contains” difference has been detected and two deriv- 
atives exist as inputs, differentiate is the operator of choice when 
a ‘‘type” difference has been detected, and so forth. This knowl- 
edge about the operators is directly told to the students and is 
practiced extensively on the first day of operator application. It 
is given to PUPS as declarative embellishments of the operators. 
This declarative knowledge is critical for the initial selection of 
operators, and it is another potential source of transfer between 
operator application and selection which we had previously 
overlooked. 

To illustrate the operation of the means-ends analysis engine, 
we now trace its application to two differentiation problems. 
Table 6.1 shows a rank ordering of the seven calculus operators 
in terms of ease of application (these results are taken from day 
one of application practice in the calculus experiment). This 
table is used to discriminate among operators when more than



170 The Transfer of Cognitive Skill 

Table 6.1. Mean time per correct application for the seven operators 
on the initial day of operator application. The rank 
ordering shown here is used by the means-ends analysis 

engine to select among operators that both apply directly 

and reduce differences. 
  

  

Time per 
Operator correct application (sec.) 

Flip derivative 28.7 

Evaluate 61.6 

Differentiate 90.7 

Substitute 97.2 

Apply chain rule 133.2 

Integrate 141.7 

Restate 160.4 
  

one reduces a difference and applies directly. As shown, the 
operators in order of difficulty are flip derivative, evaluate, dif- 
ferentiate, substitute, apply chain rule, integrate, and restate. 

The initial state of problem 1 is: 

(6.1) s = 16t 

(6.2) r = 4s 

(6.3) t = 4 

The goal is to find a value for dr/dt when t equals 4. The system 
first examines the equations that have been written and deter- 
mines that no relation currently expresses r in terms of t; that is, 
the system detects a contains difference between the current 
state and the goal. The system also determines that neither of 
the relations in the initial state is of the same type as the goal; 
that is, a type difference is detected. Neither the directionality 
nor the value difference is detected at this time, because these 

differences are only meaningful given a relation containing the 
goal variables. The system then consults the means-end analysis 
table and determines that the substitute operator applies di- 
rectly to reduce the contains difference, and the differentiate 
operator applies directly to reduce the type difference. Since 
Table 6.1 shows that differentiation is easier than substitution,



Simulating Analcgical Transfer 171 

the differentiate operator is selected and applied to equation 6.1. 
This produces ds/dt. Once again, the system cycles through its 
difference detection phase, and a contains difference is detected, 
as well as a type difference for equation 6.2. Once again, the 
system chooses to differentiate equation 6.2, producing dr/ds. 
On the next cycle of different detection, the contains difference 

is detected once again, but this time it is the chain rule rather 
than the substitution operator that reduces the difference. The 
chain rule is selected and applied, producing dr/dt. Finally, a 
value difference is detected between this latter relation and the 
goal, and the evaluate operator is selected to reduce the differ- 
ence. This produces dr/dt = 512, and the problem is solved. 

This problem is relatively easy in that it is solved completely 
by working forward. This is because, on every cycle of differ- 
ence detection, an operator was found which reduced a differ- 

ence and could be applied directly. However, on the second 
differentiation problem, no operators apply directly at first. This 
requires an initial phase of working backward and the specifi- 
cation of subgoals. 

The initial state for the second problem is: 

(6.4) ds/dt = 32¢ 

(6.5) ds/dr = 4 

(6.6)t = 4 

Once again, the goal is to find the value of dr/dt when t = 4. 
Here, the system first detects a contains difference, since no 

relation states 7 in terms of t. However, neither substitute nor 

apply chain rule applies directly to reduce this difference. Since 
apply chain rule has the fewest of its preconditions violated by 
the current state of the problem (both equations (6.4) and (6.5) 

are of the right type for the chain rule), the subgoal is set to 
apply the chain rule. The system at this point uses structural 
analogy to determine that an application of the chain rule that 
produces dr/dt would require the two derivatives dr/ds and ds/dt 
as input. These two derivatives are set as subgoals. At this 
point, the system notices that one of these subgoals, ds/dt is 
already satisfied. The remaining subgoal, dr/ds, is derived by 
first detecting a directionality difference between dr/ds and equa- 
tion (6.5) and then selecting flip derivative to reduce the differ- 
ence. In this case, no preconditions are violated, and the 
operator is applied. Once the subgoal dr/ds is satisfied, the chain 
rule is applied, producing dr/dt in terms of t. At this point, the



172 The Transfer of Cognitive Skill 

system detects a value difference, the evaluate operator is se- 
lected and applied, and the problem is solved. 

This mixture of forward and backward chaining does quite 
well at describing the sequences of moves actually made by 
subjects solving both differentiation and integration problems. 
To gather empirical support for our model, we compared the 
initial moves chosen by the simulation with the initial moves 
made by subjects in the calculus experiment. In addition to first 
moves, we examined the combiner operators chosen by both 
simulation and subjects (the combiner operators, apply chain 
rule and substitute, are those operators that reduce the contains 
difference, which is present in all problems). In each analysis, 
we examined the first six problems on both days of problem 
solving for the integration and differentiation subjects, which 
provided us with a total of 48 (2 x 6 x 2 X 2) moves to predict. 

In terms of most preferred move, the simulation agreed with the 
subjects in 46 out of the 48 cases (the two failures were recorded 
in predicting first moves). In other words, in 95 percent of the 
cases, the simulation chose the move most often selected by 

subjects. Across problems and conditions, the most preferred 
moves amounted to 58 percent of all moves made in the first- 
move analysis and 77 percent of all moves made in the combiner 
analysis. 

Table 6.2 presents a matrix relating predicted and observed 
first moves in terms of individual operators (the matrix is 

Table 6.2. Observed rank orderings of predicted and unpredicted 
first moves in the calculus experiment. 
  

Predicted first move 
  

  

Observed 
first Chain Differ- Flip 

move Substitute rule Integrate  entiate derivative 

Substitute 1.5 5.6 5.2 4.2 5.7 

Chain rule 4.2 1.0 4.3 5.5 3.2 

Integrate 5.5 2.6 1.2 3.7 2.0 

Differentiate 4.2 5.6 4.2 1.2 5.7 

Flip derivative 5.5 2.6 3.8 5.3 1.0 

Restate 3.5 4.9 4.2 2.8 4.8 

Evaluate 3.5 5.6 5.2 5.1 5.7 
 



Simulating Analogical Transfer 173 

5 X 7 instead of 7 x 7 because, whereas all seven operators 
were observed as first-move selections, only five were pre- 
dicted). For each predicted operator, we have rank ordered 
the seven observed operators in terms of frequency of subject 
selection. Presented in the matrix are the observed rank orders 
of the ith operator when the jth operator has been predicted, 
averaged across day, problem, and solution condition. The 
rank orderings range from 1 to 7, with a mean of 3.5. Help 
requests amounted to only 4 percent of the total first moves 
made and thus have been excluded from this analysis. On the 
diagonal of the matrix, which represents the observed rank 
orderings of predicted operators, the values are much lower 
than anywhere else in the matrix. Indeed, the average ob- 
served rank ordering of predicted moves is 1.1, compared 
with an average rank of 4.5 elsewhere in the matrix. In all five 
categories of prediction, the predicted operator has the highest 
observed rank ordering. This is additional evidence that the 
simulation is doing quite well at predicting the moves made 
by subjects. 

One complication in this analysis is that, given the initial 
States of the six problems, not all operators are legal as first 
moves. Of course, all first moves predicted by the simulation are 
legal. Of the remaining six operators, an average of 3.3 are legal 
and 2.7 are illegal as first moves. It is likely that the illegal moves 
are seldom selected and are accentuating the differences be- 
tween the rank orderings of predicted and unpredicted moves. 
However, if we exclude illegal operators from our analysis, we 
find that the simulation is still doing quite well at predicting 
subjects’ selections. The average rank ordering of legal, unpre- 
dicted moves is 3.6, compared with 5.2 for illegal moves and 1.1 
for predicted moves. 

Operator application 

The new calculus operators differentiate, integrate, and apply 
chain rule are represented declaratively in the system. As an 
example, Figure 6.1 shows the declarative representation of the 
differentiate formula. The PUPS working memory elements dis- 
played here are framelike and allow for any number of user- 
defined attribute-value pairs. By cross-referencing working 
memory elements in the slots, one can create networks of arbi- 
trary complexity. In this system, both operator formulas and 
their operands (the equations) are represented as networks that 
closely approximate tree structures.



174 The Transfer of Cognitive Skill 

DIFF-RULE (DR) 
Is an operator application 
its function is to differentiate DR-INPUT 
Its form involves transforming DR-INPUT to 

DR-OUTPUT 

DR-INPUT DR-OUTPUT 
is an equation Is a derivative 

its function is the input Its function is the output 

to DIFF-RULE from DIFF-RULE 

Its form is DR4 = DR5 Its form is DR2 = DR3 

DR4 DR5 
is a variable token is an expression 

Its functions are the ordinate Its function is the right-hand side 

for DR-INPUT and the of DR-INPUT 

plan-ordinate for DR-OUTPUT Its form is DR6 * DR7°R8 
Its form is y 

DR6 DR7 DR8 

is a number Is a variable token Is a number 

Its function is the its functions are the Its function is the 

coefficient of DR5 abscissa for DR-INPUT exponent of DR5 

Its form is c and the plan-abscissa Its form isn 

for DR-OUTPUT 
Its form is x 

(a) the top-level node and the input equation y = cx" 

Figure 6.1. Declarative representation of the differentiation formula. 

The working memory elements in Figure 6.1 make primary 

use of three attributes: isa, function, and form. For the purposes 

of analogy, all three are critical. Generally, the analogy mecha- 

nism expects to be given a source element, which has values for 

both function and form slots, and a target element, which has a 

value for the function slot only. The mechanism fills in the form



Simulating Analogical Transfer 175 

DR-OUTPUT 

Is a derivative 

Its function is the output of DIFF-RULE 

its form is DR2 = DR3 

DR2 DR3 

Is a rate ls an expression 

Its function is the left-hand Its function is the right-hand 
side of DR-OUTPUT side of DR-OUTPUT 

Its form is DR9/DR10 Its form is DR8 * DR6 * DR7°R"! 

DR9 DR10 DR11 
Is a differential Is a differential Is an expression 
Its function is the Its function is the Its function is the 
numerator of DR2 denominator of DR2 exponent of DR3 

Its form is d DR4 Its form is d DR7 Its form is DR8 - 1 

(b) the output equation dy/dx = nw cxn 

Figure 6.1. (continued ) 

slot of the target by bringing elements in the functional descrip- 
tions of the source and target into correspondence. Elements 
can be brought into correspondence if they serve the same func- 
tion in both source and target domains and have identical isa 
values. 

If PUPS wanted to use this knowledge structure as a basis for 
analogy, it would try to map it onto a problem. The left-hand 
side of the formula (DR-INPUT in Figure 6.1) would be mapped 
to the equation to be differentiated. Then PUPS would try to 
generate a structure analogous to the right-hand side (DR- 
OUTPUT) using the correspondences it established mapping 
the left-hand side to the equation. The details of this generation 
process are fairly complicated and will be discussed shortly. 
However, the mechanism draws the same correspondences as 
the protocol subjects and derives the answer in a depth-first, 
left-to-right fashion.



176 The Transfer of Cognitive Skill 

Analogical errors 

One pitfall in the use of analogical reasoning is the danger of 

drawing false analogies (Halasz and Moran, 1982). An interest- 

ing consequence of a network-matching algorithm like this one 

is that false analogies can be modeled by spurious correspon- 

dences between networks. For example, the networks repre- 

senting the integration and differentiation formulas share many 

correspondences, most notably in their left-hand sides. One 

might reasonably expect intrusions in the application of these 

formulas. In fact, an examination of the error data from the first 

day of operator application revealed that a small but nonneg- 

ligible percentage of the errors could be explained by the con- 

founding of these two formulas. For example, when differenti- 

ating, some subjects divide the coefficient by n + 1 rather than 

multiplying by n. Similarly, some subjects increment rather than 

decrement the exponent. Different combinations of these errors 

and their complements were observed in both differentiation 

and integration. 

A Detailed Trace of the Simulation 

In order to illustrate fully the computational properties of oper- 

ator selection and application, we present a detailed trace of the 

simulation as it solves the third problem in the set of six differ- 

entiation problems. For the purposes of the simulation, the 

initial state of problem 3 is: 

(6.7)s=Y%xr 

(6.8) ds/dt = 8t 

(6.9) = 4 

The goal of this problem is to find the value of dr/dt when t = 4. 

The solution path generated by the simulation is: 

(6.10) ds/dr = ¥ (differentiate equation 6.7) 

(6.11) dr/ds 

(6.12) dr/dt 

(6.13) dr/dt = 128 (evaluate equation 6.12 with 6.9) 

4 (flip equation 6.10) 

32t (apply chain rule to equations 6.11 and 6.8) 

In all, the simulation requires 61 production cycles to solve this 

problem. Of these, 31 involve the use of structural analogy to



Simulating Analogical Transfer 177 

interpret the declarative representations of the formulas. Struc- 
tural analogy supports both operator application (forward mode) 
and subgoal specification (backward mode). Of the remaining 30 
cycles, four involve the selection of operators from the means- 
ends table, which is another declarative structure. We assume 
that both the declarative representations of the formulas and the 
means-end table are acquired by our subjects by reading the 
instruction booklet and practicing operator applications on the 
initial day prior to problem solving. 

The initial state 

Figures 6.2-6.4 present the declarative representations of the 
three equations comprising the initial state of problem 3. All 
equations are represented as tree structures. The nodes in the 
tree are connected through both the function and the form slots. 
Generally, elements in the function slots point to nodes at higher 
levels in the tree, and elements in the form slots point to nodes 
at lower levels. In addition to values for the isa, function, and 
form slots, the root node of each equation has an extra “elabo- 

R1 

is an equation 

Its form is V1 = E1 

Elaboration (states s in terms of r) 

v1 E1 
Is a variable token ls an expression 
Its function is the ordinate Its function is the right-hand side 

for R1 of R1 
Its form is s Its form of E2 * V2E3 

E2 V2 E3 
Is a number ls a variable token ls a number 
its function is the its function is the Its function is the 

coefficient of E1 abscissa of R1 exponent of E1 
Its form is 1/ 4 Its form is r Its form is 1 

Figure 6.2. Initial state of related-rates problem 3: the equations = 4 xX x,



178 The Transfer of Cognitive Skill 

R2 
Is an equation 

Its form is E4 = E5 

Elaboration (states s in terms of ¢) 

E4 

Is a rate 

its function is the left-hand side of R2 

Its form is E6 / E7 
   

  

     

  

E6 E7 E5 

Is a differential is a differential Is an expression 

Its function is the its function is the its function is the 

numerator of E4 denominator of E4 right-hand side of R2 

its form is d V3 Its form is d V4 Its form is E8 * V4E° 

V3 V4 

Is a variable token is a variable token 

Its function is the Its function is the 

ordinate of R2 abscissa of R2 

Its form is s Its form is ft 

E8 ES 

Is a number Is a number 

Its function is the its function is the 

coefficient of E5 exponent of E5 

its form is 8 Its form is 1 

Figure 6.3. Initial state of related-rates problem 3: the equation ds/dt = 8t. 

ration” slot, telling which two variables are related by the 

equation and in which direction. These elaboration slots are 

examined by the difference detectors and are critical for plan- 

ning. 
In addition to these three equations, the initial state contains 

a statement of the overall goal of the problem. The goal is 

represented simply as an equation with the right-hand side 

missing (in Figure 6.5 the mode representing this right-hand



Simulating Analogical Transfer 179 

R3 

Is an equation 

Its form is V5 = E10 

V5 E10 
Is a variable token is a number 
its function is the left-hand side of R3 Its function is the right-hand side of R3 
Its form is t Its form is 4 

Figure 6.4. Initial state of related rates problem 3: the equation t = 4. 

side is A3). The purpose of problem solving, then, is to fill in this 
right-hand side. 

The production set 

Table 6.3 presents Englishified versions of the 12 productions 
used for planning and analogical problem solving. Not shown in 
the figure are 12 other productions that perform simple equation 
transformations and memory management. The equation trans- 
formations are used for two related purposes: to simplify the 
results of operator applications (increment exponents, multiply 
through coefficients) and to restore the results of operator ap- 
plications to the canonical form used to represent equations in 
the formulas. This ensures a match between the equations gen- 
erated by the simulation and the inputs and outputs of the 
formulas and thereby allows for application by analogy. This 
canonical form is simply cx”; that is, the right-hand side of every 
equation must have a coefficient, a variable, and an exponent. 
Thus, the simulation was not hampered by mismatches in rep- 
resentation, as some of our subjects were (recall the subject who 
was unable to apply the integration formula to dw/da = 2). In 
this sense, the simulation represents the best of our subjects. 

Productions P1 through P4 in the figure are the four produc- 
tions used for difference detection. Productions P5, P6, and P7 
are used to retrieve unary and binary operators respectively 
from the means-end table once differences have been detected. 
In both P5 and P6, the operators that are retrieved can be ap- 
plied immediately, which leads to a kind of forward-chaining 
through the problem space. The existence of two productions 
rather than one to retrieve applicable operators is due to minor



180 The Transfer of Cognitive Skill 

Al 

Is a derivative 

Its form is A2 = A3 
Elaboration (states r in terms of t) 

A2 A3 
Is a rate Is an expression 

its function is the Its function is the 

left-hand side of A1 right-hand side of A1 

Its form is A4 / AS Its form is nil 

It is the goal 

A4 AS 

Is a differential Is a differential 

Its function is the Its function is the 

numerator of A2 denominator of A2 

Its form is d V6 Its form is d V7 

V6 V7 

is a variable token ls a variable token 

its function is the Its function is the 
plan-ordinate for A1 plan - abscissa for A1 

its form is r Its form is ¢ 

Figure 6.5. The goal of problem 3. 

syntactic differences in representation (if PUPS had a more pow- 

erful representation language, we would have been able to write 

one production that had the effect of both). Both P5 and P6 are 

given higher strength than P7, which retrieves operators that do 

not apply directly. The firing of P7 represents a kind of 

backward-chaining, as subgoals are set to find equations which 

satisfy the preconditions of the proposed operator. The simula- 

tion uses backward-chaining only as a last resort, that is, when 

no operators can be found both that reduce differences and 

whose preconditions are already satisfied. 

Productions P5, P6, and P7 retrieve their operators from the



  
Simulating Analogical Transfer 181 

Table 6.3. Productions used for planning and analogical problem 
solving. 
  

P1 detect-diff-contains 

IF the goal is to find an equation of type =t that states variable 
=v] in terms of variable = v2, 

and no equation already relates =vl and =vz2, 
and no operator application is already planned to reduce the 

“contains” difference, 

THEN set as a subgoal to retrieve an operator from the means-ends 
table that reduces the “contains” difference. 

P2 detect-diff-type 

IF the goal is to find an equation of type =t, 
and there is an equation in the initial state not of type =t, 

THEN set as a subgoal to retrieve an operator from the means-ends 
table that reduces the ‘‘type’”’ difference 

and produces an equation of type =t. 

P3 detect-diff-direction 

IF the goal is to find an equation of type =t that states variable 
=v] in terms of variable = v2, 

and there is an equation of type =t that states =v2 in terms 
of =vl 

THEN set as a subgoal to retrieve an operator from the means-ends 
table that reduces the “directionality’’ difference and 
produces an equation of type =t. 

P4 detect-diff-value 

IF the goal is to find the value of =v1, 

and there is an equation of the form =v1l = =rhs, 
and expression =rhs has a form but is not simply a number, 

THEN set as a subgoal to retrieve an operator from the means-ends 
table that reduces the ‘‘value” difference. 

P5 retrieve-unary-operator 

IF the goal is to retrieve a unary operator that reduces a 

difference of type =d and produces an equation of type =t, 
and the means-ends table contains an entry =operator that 

reduces a difference of type =d and produces an equation of 

type =t, 
and the current equation is =current, 

THEN create a new root node for an operator application whose 
function is to apply =operator to equation =current. 

(continued)



182 

Table 6.3. 

The Transfer of Cognitive Skill 

(continued) 
  

P6 retrieve-binary-operator 

IF 

THEN 

the goal is to retrieve a binary operator that reduces a difference 
of type =d and produces an equation of type =t, 

and the means-ends table contains an entry =operator that 
reduces a difference of type =d and produces an equation 
of type =t, 

and the current equations are =currentl] and =current2, 
create a new root node for an operator application whose 

function is to apply = operator to equations =current1 and 
= currentz2. 

P7 retrieve-binary-operator-no-inputs 

IF 

THEN 

the goal is to retrieve a binary operator that reduces a difference 
of type =d and produces an equation of type =t, 

and the means-ends table contains an entry =operator that 

reduces a difference of type =d and produces an equation of 
type =t, 

and the current equations are =currentl and =currentz2, 
but they are not appropriate for = operator, 

create a new root node for an operator application whose 

function is to apply = operator, 
and set as subgoals to find appropriate inputs. 

P8 goal-satisfied 

IF 

THEN 

the goal is to find an equation = goal of type =t that states = vl 
in terms of = v2, 

and an equation =new has just been generated of type =t 
that states =v1 in terms of =v2, 

identify =new as an instance of = goal 
and mark = goal as satisfied. 

P9 interpret-formula 

IF 

THEN 

the goal is a = thing whose function is to do =something to 
= datal and whose form is nil, 

and there is an element of a formula =f that isa = thing whose 
function is to do =something to = data2 and whose form is 
nonnil, 

and the current operator application involves the formula =f, 

try to generate the form slot of the goal from the form slot of 

the formula by analogy. 

P10 functional-elaboration 

IF the goal is a = thing whose only function is to do = something 
to = data,



Simulating Analogical Transfer 183 

Table 6.3. (continued) 
  

and there is an element of a formula =f that is a = thing whose 
function slot has two values, one to do = something to = data, 
another to do =something-else to = other-data, 

and the current operator application involves the 
formula =f, 

THEN try to generate the missing function slot of the goal from the 
extra function slot of the formula by analogy. 

P11 states-elaboration 

IF there is a variable =v1 whose function is to be the ordinate 

of =equation, 
and there is a variable = v2 whose function is to be the abscissa 

of =equation, 
and =equation currently has no “states” elaboration, 

THEN =equation states =v1 in terms of =v2. 

P12 supply-middle-variable 

IF there is an operator application that takes two inputs, 
=inputl and =input2, 

and there is a variable =vl whose function is to be the 

ordinate of =inputl and whose form is =letter1, 

and there is a variable =v2 whose function is to be the 
abscissa of =input2 and whose form is =letter2, 

and there is a variable = v3 whose function slot has two values, 

one to be the abscissa of =inputl and another to be 
the ordinate of =input2, and whose form slot is nil, 

and there is a letter =letter3 that does not equal =letter1 or 

=letter2, 

THEN the form of =v3 is =letter3. 
  

means-end table, a declarative structure shown in Table 6.4. We 

assume that the means-ends table is derived by students when 
they read the instruction booklet and practice operator applica- 
tion exercises on the first day. The entries in the table are ordered 
from most to least difficult so that, when the table is loaded into 
working memory, the easier operators will have greater recency 
and will take precedence over the more difficult operators. 

Production P7 sets subgoals to find appropriate inputs for 
particular operators. One or more additional operator selections 
and applications may be required to generate these inputs. Pro- 
duction P8 is simply a demon that examines the products of



184 The Transfer of Cognitive Skill 

Table 6.4. Means-ends analysis table. 
  

Restate-difference 
Is a unary operator 
Its function is to reduce a directionality difference 
It produces an equation 

Integrate-difference 

Is a unary operator 

Its function is to reduce a type difference 
It produces an equation 

Chain-difference 

Is a binary operator 
Its function is to reduce a contains difference 

It produces a derivative 

Substitute-difference 
Is a binary operator 
Its function is to reduce a contains difference 

It produces an equation 

Differentiate-difference 
Is a unary operator 
Its function is to reduce a type difference 
It produces a derivative 

Evaluate-difference 

Is a binary operator 
Its function is to reduce a value difference 

Flip-difference 
Is a unary operator 
Its function is to reduce a value difference 
It produces a derivative 
  

operator applications to determine whether subgoals have been 
satisfied. 

Production P9 is the one production in the system that per- 
forms function-to-form analogy, so called because the analogy 
mechanism uses the functional descriptions of elements in the 
form slot of the model to generate corresponding elements in 
the form slot of the target. Function-to-form analogy is the 
mechanism through which the declarative representations of 
the formulas are interpreted. The purpose of P9 is to select a 
working-memory element whose form slot is empty (designated 
the target) and a similar element whose form slot is not (desig- 
nated the source). Typically, the target is some element of an 
equation that the simulation is trying to derive, and the source



  
Simulating Analogical Transfer 185 

is a corresponding element from a formula. The analogy mech- 
anism, which is implemented in LISP and is part of the PUPS 
architecture, attempts to write the missing form slot of the tar- 

get. A short description of the analogy algorithm can be found 
in the Appendix to this chapter. A more complete description 
can be found in descriptions of the PUPS implementation 
(Thompson, 1986; Anderson and Thompson, in press). 

Production P10 performs another kind of analogical process- 
ing, whose aim is to elaborate the functional descriptions of 
elements in the target domain using the functional descriptions 
of elements in the source domain. Anderson and Thompson (in 
press) call this kind of processing function-to-function analogy. 
The critical point here is that sometimes the functional descrip- 
tions of elements in the target domain are too sparse to allow for 
the standard function-to-form analogy to work. In these situa- 
tions, if the functional description of the source is somewhat 

richer, it may be possible to elaborate the functional description 
of the target by the same kind of analogical processing just 
described. The only difference is that the writing nodes are in 
the function slot of the source element rather than the form slot. 
Once the functional description of the target is elaborated, the 
standard function-to-form analogy has a greater probability of 
success. 

As an example of function-to-function analogy as a prerequi- 
site to function-to-form analogy, consider the situation faced by 
the simulation as it tries to apply the differentiation formula (see 
Figure 6.1) to an equation. The general strategy of the simula- 
tion is to bring the equation it wants to differentiate into corre- 
spondence with the equation representing the input of the 
differentiation formula, and to use the correspondences gener- 
ated by this process to generate the result. Initially, the equation 
the simulation wants to differentiate is represented as a tree 
structure nearly identical in structure to the equation that serves 
as the input to the formula. However, one critical difference is 
that, in the source domain (the formula), the two variables that 

appear in the input equation (DR4 and DR7) have elaborated 
functional descriptions showing that the variables play an im- 
portant role in not only the input but also the output. In short, 
the ordinate of the input is also the ordinate of the output, and 
the abscissa of the input is also the abscissa of the output. In the 
target domain, the variables are simply described by their roles 
in the input (the output does not yet exist). Thus, the first step 
in generating the output in the target domain is to elaborate the 
functional descriptions of these variables. Once the ordinate and



186 The Transfer of Cognitive Skill 

abscissa of the output have been identified, function-to-form 

analogy can generate the rest of the result. 
Production P11 examines new equations generated during the 

course of problem solving and fills in their elaboration slots with 
information about the variables they contain. Again, this repre- 
sents knowledge the student presumably has acquired from 
prior math courses. These elaborations are examined by the 
difference detectors and are critical to planning. 

Rounding out the set, production P12 is a special-purpose 
production which plays a minor role in the reverse application 
(that is, decomposition) of the chain rule and substitute equa- 
tions operators. By examining the outputs of the declarative 
representations of these operators, the analogy mechanism can 
determine only the ordinate of the first input and the abscissa of 
the second. However, to specify the inputs fully, the so-called 
“middle” variable (the variable shared by both inputs that dis- 
appears in the output) needs to be identified. Production P12 
embodies the following line of reasoning. There are three vari- 
ables involved in the problem; two have already been bound to 
placeholders in the formula. Since all placeholders must have 
different values, by process of elimination, the middle variable 
must be the one remaining unbound variable. 

Production P12 is somewhat inconsistent with the spirit of the 
model in that it represents a special-purpose rather than a 
general-purpose rule. However, P12 might be regarded as a 
highly compiled version of decisions made in actuality by many 
more firings of general-purpose reasoning productions. 

The trace 

We now describe the sequence of productions that fire in the 
solution of problem 3. Table 6.5 shows a summary of the trace. 
In addition to the 12 productions from Table 6.3, Table 6.5 
references the 12 productions that perform memory manage- 
ment and equation transformation. Their operation is only 
briefly noted. Once again, the initial state of problem 3 is: 

(6.14)s =Vxr 

(6.15) ds/dt = 8t 

(6.16) t = 4 

The goal is to find a value for dr/dt when t equals 4. In the first 
two cycles, the simulation detects two differences between the



Simulating Analogical Transfer 187 

Table 6.5. Summary of the trace of the simulation on problem 3. The 
* denotes productions that perform equation 
transformation and memory management. 
  

  

Cycle Production Selected actions 

1 Detect-diff-contains No equation found relating r and t 

2 Detect-diff-type s = 1/4 X ris nota derivative 

3 Retrieve-unary-operator Differentiation formula selected 
and loaded 

4 Remove-difference* “Contains” difference deleted from 
working memory 

5-6 Functional-elaboration Functional descriptions of s and r 
elaborated to reflect roles played 
in output 

7-12 _—_ Interpret-formula Differentiation formula interpreted 
13-17. Simplify-output* Output restored to canonical form 

18 States-elaboration New derivative tagged with vari- 
ables it contains 

19 Application-finished* Differentiation marked as finished 

20 Detect-diff-contains Still no equation relating r and t 

21 Ret-operator-no-inputs Chain rule loaded into working 
memory 

22-23 Functional-elaboration Functional descriptions of r and t 
elaborated to reflect roles played 
in inputs 

24-31 Interpret-formula Chain-rule output decomposed 

into inputs 

32 Supply-middle-variable | Middle variable supplied 

33-45 Interpret-formula Chain-rule decomposition contin- 
ued 

46-47 States-elaboration Desired inputs tagged with vari- 
ables they contain 

48 Application-finished* Reverse application of chain rule 
finished 

49 Goal-satisfied Second input to chain rule identi- 
fied as ds/dt = 8t 

50 Detect-diff-direction Directionality difference between 
ds/dr and desired first input dr/ds 

51 Retrieve-unary-operator Flip derivative selected to reduce 
difference 

52 Flip-derivative* Flip derivative operator applied 

53-54 Simplify-output* Output restored to canonical form 

55-57  Simplify-output* Chain rule applied to inputs and 
result restored to canonical form 

58 Detect-diff-value Goal set to evaluate dr/dt = 32t 

59 Retrieve-binary-operator Evaluate operator selected 

60-61 Evaluate* Evaluate operator applied and re- 
sult simplified 
 



188 The Transfer of Cognitive Skill 

initial and goal states: first, no equation in the initial state relates 
rand t, and second, equation 6.14 is of the wrong type. Since the 
differentiation operator reduces the type difference and also 
applies directly to equation (6.14), the differentiation formula is 
retrieved and loaded into working memory. On the third cycle, 
a goal is set to differentiate equation (6.14). 

Before the formula can be applied, however, the functional 
descriptions of the variables in equation (6.14) need to be elab- 
orated. In cycles 5 and 6, the simulation recognizes that the 
ordinate of equation (6.14) will also serve as the ordinate of the 
new derivative, and likewise for the abscissa. At this point, the 

actual form of the new derivative is generated by interpreting 
the formula via function-to-form analogy. A number of rounds 
of this analogy process take up cycles 7-12. In cycles 13 through 
18, the new derivative is simplified, put into canonical form, and 

elaborated by P11, states-elaboration. On cycle 19, the goal of 
differentiating equation (6.14) is marked as satisfied. 

The simulation is now ready for its next round of difference 
detection and, subsequently, its next operator selection. On 
cycle 20, the contains difference is again detected, but no 

operator applies directly to reduce the difference. The chain rule 
is identified as the operator whose preconditions are least 
violated, and on cycle 21 subgoals are set to find the appropriate 
inputs. The chain rule formula is loaded into working memory. 

At this point, the analogy mechanism would apply the chain 
rule formula in the forward direction if it could, but it can find 

no inputs that satisfy the preconditions of the formula. The 
simulation, then, does what it can, which is to specify the inputs 
it needs. An important feature of the simulation is that the 
declarative representations of the operators, most notably the 
chain rule and substitution, allow for application in both the 
forward and backward direction. Once the chain rule formula 
has been loaded into working memory, the analogy mechanism 
can be quite opportunistic in choosing source elements from 
either the inputs or the output of the formula. In other words, if 
equations are available in working memory that match the in- 
puts, the output is generated. Likewise, if equations are avail- 
able that match the output, the inputs are generated. The 
direction of application depends solely upon the type of infor- 
mation present at loading. 

In this case, the goal of the problem matches the output of the 
chain rule formula. However, since the goal is only partially 
specified (it has no right-hand side), the inputs can only be 
partially specified as well (with the chain rule, even if the output



Simulating Analogical Transfer 189 

were completely specified, there would be some indeterminacy 
concerning the inputs; this is why P12, supply-middle-variable, 
is needed). Before even this partial specification can go through, 
however, the simulation has to elaborate the functional descrip- 
tions of the variables in the goal dr/dt (cycles 22 and 23). The 
simulation must realize (by analogy to the chain rule formula) that 
the variable r serves not only as the ordinate of dr/dt but also as 
the ordinate of the first input to the chain rule. Similarly, the 
variable f serves not only as the abscissa of dr/dt but also as the 
abscissa of the second input. Once this functional elaboration is 
made, the analogy mechanism successfully decomposes dr/dt into 
the two inputs dr/ds and ds/dt. During this process, the variable s 
is supplied not by the analogy mechanism but by production P12. 

The simulation is now on its 49th cycle and three goals are 
outstanding: specification of the right-hand sides of the chain 
rule output (dr/dt) and the two inputs (dr/ds and ds/dt). Like the 
output, the inputs are represented as equations with the right- 
hand sides missing. At this point, production P8, goal-satisfied, 
examines the current set of equations and discovers that the 
second input to the chain rule already exists, namely equation 
(6.15). This goal is marked as satisfied. On cycle 50, the simu- 
lation goes into another round of difference detection, this time 
discovering a directionality difference between the first input to 
the chain rule and the derivative of equation (6.14). The flip 
derivative operator is identified in the means-end table as the 
operator that changes the directionality of derivatives. In cycles 
02 through 54, the flip derivative operator is applied, and the 
first input to the chain rule is generated. All the preconditions 
for the chain rule are now satisfied. 

The simulation has now done most of its serious work. On 
cycles 55 and 56, the chain rule is applied in the forward direc- 
tion, producing dr/dt = 32t, and there are no more outstanding 
operator applications to perform. On the next round of differ- 
ence detection, the simulation detects a value difference be- 
tween the previous result and the goal, and the evaluate 
operator is selected. In cycles 60 and 61, the output of the chain 
rule is evaluated with t = 4, the result is simplified, and the 
problem is solved. 

Production Compilation 

We have now described in some detail a model of novice prob- 
lem solving in calculus. The model relies heavily on the inter- 
pretation of declarative structures by general-purpose analogical



190 The Transfer of Cognitive Skill 

processes. These declarative structures are not use-specific and 

support both operator application and operator selection. How- 

ever, according to recent developments in the ACT* theory of 

skill acquisition (Anderson and Thompson, in press), one 

byproduct of problem solving by analogy is the creation of new 

use-specific productions which essentially summarize the com- 

putation performed by the analogy. These new productions are 

useful in that they do away with the need for analogical pro- 

cessing when the same situation is encountered again. It is well 

known that analogical processing is quite expensive. In PUPS, 

the process of computing analogies is formally equivalent to the 

search for correspondences between graph structures, which is 

an NP-complete problem. The production rules essentially sum- 

marize the results of this search and replace what is essentially 

a weak method with a strong method (Newell, 1973). The theory 

stipulates that production compilation should produce a marked 

improvement in terms of both speed and accuracy. This is due 

to both the reduction in search and the decreased load on work- 

ing memory, since the previously-interpreted declarative struc- 

tures no longer have to be maintained. Indeed, we typically 

observe a nearly 50 percent improvement and a marked de- 

crease in verbalization going from the first to the second trial in 

many problem-solving situations. This observed improvement 

corresponds to the compilation of productions from analogy. 

In PUPS, productions are compiled from the traces of analog- 

ical processing. The creation of the productions is guided by the 

semantics underlying the representation of declarative struc- 

tures in PUPS. The semantics is simply that the contents of the 

isa and function slots of a working memory element imply the 

contents of the form slot. This means that lurking implicitly in 

every declarative structure is a production rule. Depending 

upon how networks of declarative structures are interpreted 

and for what purpose, very different sets of production rules can 

be compiled. 
As an example of production compilation, the following two 

rules were derived from the application of the differentiation 

formula to differentiate s = ¥% X p in the solution of problem 3 

(cycles 7-12). The first rule summarizes a large portion of the 

generation of the left-hand side of the result: 

IF the goal is to find the form of a derivative =d 

THEN create a new element =rate 

whose function is to be the left-hand side of =d 

and whose form is =num / =denom where:



Simulating Analogical Transfer 191 

1. =num is a new element which is a differ- 

ential and whose function is to be the 

numerator of =rate; 

2. =denom is a new element which is a differ- 

ential and whose function is to be the 

denominator of = rate. 

This rule, which is actually the composition of two smaller rules 
derived from the trace, simply states that the left-hand side of 
the new derivative will be composed of a fraction which is in 
turn composed of two differentials. This inference about the 
structure of the result can be made in the absence of any specific 
information about the equation being differentiated. It is gener- 
ally true of all derivatives. 

In the next rule, the right-hand side of the result is generated. 
Specific information about the input equation is now critically 
important since the right-hand side is generated from the values 
of coefficients, exponents, and so forth, in the input: 

IF the goal is to find the form of an expression =el 
whose function is to be the right-hand side of 
derivative =output 

and the function of this derivative = output is to be 
the output of operator application = app 

and there exists an equation =input whose func- 
tion is to be the input of operator application 

—~ app 
and there exists an expression = e2 whose function 

is to be the right-hand side of =input 
THEN conclude that the form of =el is 

=exp X =coeff x =var ‘~&P ~ ) where: 
1. =coeff is a number whose function is to be 

the coefficient of =e2 
2. =var is a variable whose function is to be 

the abscissa of =e2 
3. =exp is a number whose function is to be 

the exponent of =e2. 

This rule, also a composition, summarizes much of the content 
of the power rule for differentiation. Once compiled, these rules 
can be used in service of any differentiation goal in the future, 
and can be transferred within and across problems. 

An interesting feature of the formula for the chain rule is that 
it supports operator application when interpreted in the forward 
direction and supports operator selection when interpreted in 
the backward direction. An implication of this feature is that



192 The Transfer of Cognitive Skill 

productions compiled from forward interpretations should ap- 

ply to operator application but not selection, and productions 

compiled from backward interpretations should apply to oper- 

ator selection but not application. Thus, the declarative knowl- 

edge becomes use-specific when deposited in productions. An 

example of this process is the following two rules, which were 

both compiled from analogical interpretations of the chain rule 

but in opposite directions. The first rule applies to operator 

application, and the second to operator selection: 

Application: 

IF there is a variable =x whose function is to be the 

ordinate of derivative =inputl 
and the function of =inputl is to be the first input 

to the chain rule 

THEN find the derivative =output whose function is to 

be the output of the chain ruie 
and elaborate the function of =x to be the ordinate 

of =output. 

Selection: 

IF there is a variable =x whose function is to be the 

ordinate of derivative =output 
and the function of = output is to be the output of 

the chain rule 
THEN find the derivative = input1 whose function is to be 

the first input to the chain rule 
and elaborate the function of =x to be the ordinate 

of =inputl. 

These rules are in a sense mirror images of one another; the left- 

and right-hand sides have simply been reversed. This example 

highlights the fact that, whereas declarative knowledge can be 

put to a variety of uses, procedural knowledge is directional and 

use-specific. Knowledge compilation yields great savings in 

terms of time and accuracy. However, these savings are realized 

only within a limited range of tasks. In short, compilation im- 

plies a certain specialization of knowledge. 

Implications 

We have now gone through the details of how a PUPS produc- 

tion system solves a calculus problem given only a declarative 

representation of the problem, how it compiles productions



Simulating Analogical Transfer 193 

from this experience, and how these productions serve as the 
basis for transfer to new problems. So we have a detailed and 
more or less complete instantiation of the identical productions 
theory of transfer. This identical productions theory predicts 
improvement in time due to the use of compiled productions. It 
predicts improvement in accuracy as a side effect of the reduc- 
tion in capacity demands due to compilation. 

One feature of the knowledge compilation process is that it is 
insensitive to the underlying correctness of the declarative 
knowledge that it takes as input. If the underlying declarative 
knowledge is wrong, practice will lead to the creation of buggy 
rules. Indeed, we observed a variety of fundamental misconcep- 
tions in the problem solving of our subjects. For example, some 
students represented the chain rule as dx/dz = dx/dy x dz/dy. 
The knowledge compilation process would not correct this kind 
of error. However, if operator applications are practiced in a 
structured environment where knowledge of the correctness of 
results is supplied (which was the case in our tutoring environ- 
ment), subjects will have an opportunity to detect errors in their 
representations and change them. In keeping with recent devel- 
opments in the ACT* theory, fixes cannot be performed directly 
on production rules but must instead be performed on the un- 
derlying declarative representations. 

Perfecting the declarative representations of the rules turns 
out to be a basis for transfer across various uses of the same 
knowledge. That is, in using the knowledge in one form, one 

has the opportunity to detect errors and correct the representa- 
tion for use in another form. This declarative-based transfer 
should occur only between initial learning in the base domain 
and initial learning in the target domain. This is much more 
limited than production-based transfer which transfers the full 
experience in the base domain to the full course of learning in 
the target domain. Still it is important because it provides a basis 
for transfer that is not use-specific. 

Conclusion 

We have presented a model of novice performance on calculus 
related-rates problems. The model uses structural analogy to 
interpret declarative representations of operators and means- 
ends analysis to provide problem solving power. The model is 
somewhat of an idealization in that many of the analogical er- 
rors and notational problems experienced by subjects are re- 
moved. The model accounts for a variety of results, most notably



194 The Transfer of Cognitive Skill 

the selection of initial and combiner moves. Most importantly, 

the model predicts that, contrary to the results of the experiment 

reported in chapter 5, operator application should transfer to 

operator selection during the initial stages of learning. The basis 

of this transfer is in the declarative representations of the oper- 

ators. 

Appendix: Technical Discussion of Analogy 

We present our discussion with respect to the function-to-form 

analogy in P9, but the same algorithm works, mutatis mutandi, 

for function-to-function analogy in P10. The analogy mechanism 

is largely supported by two data structures, called the corre- 

spondence list and the expansion queue. The correspondence 

list is a cumulative record of all elements in the source and target 

domains which have been found analogous in some way and 

brought into correspondence. The content of the correspon- 

dence list ultimately determines whether the analogy is success- 

ful (all elements in the form slot of the source element must have 

corresponding elements in the target domain for the form slot to 

be rewritten). The expansion queue manages the search for 

correspondences by keeping track of the pairs of elements in the 

source and target domains that have not yet been examined. 

The analogy process starts by putting the pair of elements 

identified by production P9 as analogous onto the correspon- 

dence list and also onto the expansion queue. The problem now 

is to find corresponding elements in the target domain for each 

element in the form slot of the source. The elements in the form 

slot of the source are here called the writing nodes, since the new 

form slot will ultimately be written using the bindings for these 

nodes. Each of the writing nodes is first checked to see whether 

it already has a correspondence on the list. If it does, the corre- 

sponding element is inserted in the position of the writing node 

in the form slot of the target. Initially, however, these elements 

almost certainly do not have correspondences, since there is 

only one pair on the list. Clearly, more correspondences need to 

be drawn. Before giving up on the current list, however, the 

analogy mechanism does a depth-first recursive search of the 

function slots of the writing nodes to see whether any elements 

in them already have correspondences on the list. If the function 

slot of any ‘ancestor’ of a writing node can be rewritten using 

correspondences, a new working memory element is generated 

and bound to the writing node. In other words, if the functional 

description of a writing node can be rewritten using elements



Simulating Analogical Transfer 195 

from the target domain, but no element can be found to corre- 
spond to the writing node itself, a new element is created in the 
target domain and is given the analogous (rewritten) functional 
description. This, then, is how new structure is generated by the 
analogy mechanism. 

If this foray down the function slots of the writing nodes fails, 
then the system adds more pairs to the correspondence list, if it 
can. New correspondences are drawn by popping the pair of 
elements off the expansion queue and matching all elements in 
the function and form slots from each element (on the initial 
iteration, the matching of elements in the form slot is fruitless, 
because the target has no form elements). This matching process 
occurs only if (1) the slots have the same number of elements in 
both source and target, so that no element is left unbound, and 
(2) the main relational terms in both slots, which identify the 
type of structure in a slot, are the same. The resulting corre- 
spondences are added to both the correspondence list and the 
expansion queue, and once again the system tries to find (or 
generate) correspondences for the writing nodes. This process is 
repeated until either all writing nodes have correspondences 
(success) or the expansion queue is empty (failure). In the latter 
case, the two networks representing the source and target do- 
mains have been brought into maximal correspondence, but still 
no bindings can be found for all the writing nodes. At this point, 
the system abandons the attempt to use the source node as an 
analog. If it can find a new source node from which to gather 
correspondences, it will try to use this for analogy. 

Rule compilation 

As a byproduct of the analogy process, a new production rule is 
formed which summarizes the successful search for correspon- 
dences. The left-hand side of this new rule makes reference to 
all the pairs of correspondences on the correspondence list 
which were used in writing the form slot in the target network. 
Specifically, a variabilized node is introduced on the left-hand 
side for each distinct pair of correspondences. Tests are added to 
each variabilized node depending upon the method by which 
the pair was initially added to the correspondence list. For ex- 
ample, if a pair of correspondences was added to the list by 
matching values in the function slots, then the test would check 
for matches in the function slots. Similarly, if the pair was added 
by matching form slots, the test would check for matches in the 
form slots. The right-hand side of the rule simply generates any



196 The Transfer of Cognitive Skill 

and all new structures that were generated by the analogy pro- 

cess. In the case of function-to-form analogy, this would be the 

new value for the form slot of the target node. Once again, 

references to all pairs of correspondences are replaced by vari- 

abilized nodes. Thus, the resulting production rule is guaran- 

teed a certain range of application.



7 / Declarative Transfer 

res the theoretical analysis of the early stages of skill acqui- 
sition, we have derived the following predictions: 

1. There should be an initial period of positive transfer among 
tasks to the degree that the tasks share a common declarative 
base. 

2. After the initial phase of training, continued positive trans- 
fer between tasks should depend on the degree to which they 
share common productions. Thus, transfer should be use spe- 

cific after this initial phase. 

Our predictions about transfer up to this point have been 
production-based and have rested on the identical productions 
logic of prediction (2). We have not considered the initial de- 
clarative component in prediction (1), which adds another basis 
for positive transfer and constitutes an important elaboration to 
the identical productions model. Indeed, in our experiments, 
we have often been haunted by more positive transfer than we 
could readily predict. However, it has been unclear whether the 
surplus positive transfer could be attributed to a common de- 

clarative base. 

The Declarative-Procedural Distinction 

Ultimately, our claims about the separate contributions of de- 
clarative and procedural knowledge to transfer rest on assump- 
tions in ACT* about the fundamental distinction between 
declarative and procedural memory. Although this distinction



198 The Transfer of Cognitive Skill 

has had a checkered past in both artificial intelligence and cog- 
nitive science (see e.g. McDermott, 1981), there is ample exper- 
imental and anecdotal evidence to support it. Generally, the 
distinction is based upon a number of perceived differences 
between the two memory systems. 

Conscious access 

Declarative knowledge tends to be knowledge that can be ac- 
cessed and stated verbally, whereas procedural knowledge can- 
not. A typical instance of declarative knowledge is a fact, such as 
Mary's phone number is 246-3267. According to ACT, as a par- 
ticular skill is practiced (such as dialing Mary’s phone number), 
conscious access to the declarative precursors may be lost as 
they are superseded by productions and fall into disuse. Indeed, 
some people report that, if they dial a phone number long 
enough, they lose the ability to recall the number verbally. Sim- 
ilar examples can be found in domains as diverse as learning to 
drive a car or learning the syntactic rules of a foreign language. 
A particularly intriguing experimental demonstration of this ef- 
fect can be found in the work of Posner (1973), who asked 

skilled typists to label a diagram of a standard typewriter key- 
board with the appropriate letters in alphabetical order. He 
found that, whereas the typists could type the letters in a few 
seconds with no errors, the diagramming task required several 
minutes and was highly error-prone. Subjects were often unable 
to recall the visual location of a letter and had to type it to 
determine its position. This is a dramatic demonstration of lack 
of conscious access to procedural knowledge. 

Retention 

A popular piece of psychological folklore is that, whereas fac- 
tual, declarative knowledge is particularly sensitive to the rav- 
ages of time, procedural skills like riding a bicycle or swimming 
the backstroke are retained relatively intact over long periods. 
Bunch and his colleagues (Bunch, 1936; Bunch and McCraven, 

1938; Bunch and Lang, 1939) performed a series of experiments 
with animal and human subjects which suggested that there 
were in fact two components to skilled performance, one that 
was forgotten rather quickly and one that was retained more 
permanently. For example, Bunch (1936) trained human sub- 
jects to solve a mazelike puzzle and then tested them after 
various intervals on either the same puzzle or similar puzzles.



Declarative Transfer 199 

Figure 7.1 shows that performance on the same puzzle was 
virtually perfect at no delay, but rapidly declined as the delay 
was increased (the periods of delay were two weeks and one, 
two, three, and four months). In contrast, performance on the 

similar puzzles was worse than performance on the same puzzle 
at first, but stayed relatively constant over the four-month pe- 
riod. In other words, the transfer effect was much more persis- 
tent than the specific effects of learning a particular puzzle. After 
a four-month delay, the performance of subjects on the same 
and similar puzzles was virtually identical. Whereas these re- 
sults were explained at the time in terms of “narrow” and 
“broad” transfer factors, they may be reinterpreted now as aris- 
ing from the differential role of declarative and procedural mem- 
ory in transfer. The high performance of subjects on the same 
puzzle at no delay was due to the combined effects of declarative 
and procedural memory. However, as time passed, memory for 
specific facts about the training puzzle decayed and performance 
deteriorated. After a four-month delay, subjects solving the 
same puzzle had forgotten all of the declaratively encoded de- 
tails and were performing at the same level as subjects who 

    

te 

@ 

w 
c !00F Q 
© \ 
at \ 
~ \ 

: \ = 8OF \ 

” 

oO bo 
a se _O . 

— 6OF ~S0 LU ee rr ~~ Retention 
oO Oo- ~ 

@ — 
oO ~~ 
o ~ 

- L ~O - 40 

@® 
e 9 
@® No Transfer 

a. 20Fr 

1 1 1 l i 
  

0 2 14 30 90 

Time delay in days 

Figure 7.1. Effect of delay between training and transfer tasks (the retention curve 
denotes performance on the same puzzle, and the transfer curve denotes performance on 

similar puzzles).



200 The Transfer of Cognitive Skill 

were solving similar puzzles. Presumably, this relatively stable 
baseline of performance was provided by the procedural com- 
ponent. 

Neurophysiological dissociation 

Perhaps the most striking evidence to date for the declarative- 
procedural distinction is the long line of clinical studies initiated 
by Milner (1962) showing a dissociation between the two mem- 
ory systems in certain stroke victims (for a review, see Schacter, 
1987). Specifically, a wide variety of studies have shown that 
certain amnesic patients can learn complex cognitive and motor 
skills, retain them over time, but have no declarative memory of 
ever performing the skill. For example, in a study by Cohen and 
Corkin (1981), the subject H.M. was taught procedures for solv- 
ing the five-disk tower-of-Hanoi puzzle and showed great im- 
provement over trials. However, when asked at the beginning 
of each session whether he had ever seen or solved the puzzle 
before, he would respond with an emphatic no. In keeping with 
the ACT* theory, our interpretation of this situation is that 
H.M.’s procedural memory system was relatively unimpaired, 
but that the connection between short and long-term declarative 
memory had been severed. Thus, H.M. was able to compile 
productions from declarative structures in short-term memory 
but was unable to retrieve anything from long-term declarative 
memory about the problem-solving episode. 

Asymmetry of access 

Perhaps the most critical difference between declarative and pro- 
cedural memory in terms of transfer is that knowledge is broadly 
accessible when stored declaratively but is narrowly accessible 
when stored procedurally. Specifically, unlike declarative struc- 
tures, production rules imply a certain directional asymmetry in 
that knowledge of conditions gives rise to knowledge of actions, 
but not vice versa. This is simply a consequence of how produc- 
tion rules are matched; that is, they are matched on the basis of 

the contents of their conditions and not their actions. Our calculus 
experiment and Kessler’s LISP programming experiment dem- 
onstrated the encapsulation of procedural knowledge. We now 
argue that transfer based on declarative knowledge is not so 
characterized. Thus, the experiments that follow that investigate 
declarative transfer may be regarded as additional evidence for 
the declarative-procedural distinction in human memory.



Declarative Transfer 201 

Declarative Transfer in Calculus 

We performed an experiment to reexamine transfer in calculus 
to see if we could find some evidence for an initial declarative 
transfer component. A tentative conclusion from the first calcu- 
lus experiment was that the operator selection and application 

components were largely independent. This conclusion was 
based on the fact that a second day of application practice had 
no effect on selection in terms of either time per selection or 
extra moves per problem. Specifically, subjects who practiced 
application but not selection on day 2 were no better at selection 
on day 3 than the selection control group on day 2. However, all 
subjects in the experiment started with a single day of applica- 
tion practice. Thus, our test involved a comparison of subjects 

with one versus two days of application practice. Our conclu- 
sion concerning the independence of selection and application 
components would have been much stronger had it been based 
on a transfer manipulation involving the first rather than the 
second day of practice. Contrary to the initial results, our pre- 
diction in this case is that a group with no operator application 
practice prior to problem solving would do much worse in terms 
of both time per operator selection and extra moves per problem 
than a group with a single day of application practice prior to 
problem solving. This prediction has its roots in our simulation 
model of related rates problem solving. Although selection and 
application components share no productions in the model, 
they in fact share a common base of declarative knowledge. 
Therefore, one might expect to see substantial transfer between 
the application and selection components if either is practiced 
separately before problem solving begins. Furthermore, all pos- 
itive transfer effects should be restricted to the first day of prac- 
tice on application, since it is on this first day that subjects 
acquire their declarative representations. According to the 
model, the second day of practice in the first calculus experi- 
ment had no measurable effect because subjects had already 
acquired their declarative representations of the operators and 
were then working primarily with procedural representations. 

The second calculus experiment is concerned with determin- 
ing the effect of a first day of practice on selection and applica- 
tion. Once again, subjects work in the context of our minimal 
calculus tutor. On the first day of this two-day experiment, 
subjects receive either selection practice or application practice, 
both, or neither. In the “selection only’”’ condition, subjects are 
given differentiation problems to solve but are required only to



202 The Transfer of Cognitive Skill 

select the operators, not apply them. Following the selections, 
the results of the applications are supplied automatically by the 
tutor. In the “application only” condition, subjects apply oper- 
ators but do not select them. The operator applications are 
drawn from the optimal solution paths of the differentiation 
problems. These two conditions constitute the off-diagonals for 
the design. In the “both” condition, subjects solve full-scale 

differentiation problems, performing both the selections and the 
applications. Finally, in the “neither” condition, subjects prac- 
tice moving the mouse and typing equations in the Student 
Workspace window. Subjects go through the same motions as if 
they were solving differentiation problems using optimal meth- 
ods. However, the subjects’ mouse selections and equations are 
prompted by the tutor and therefore require minimal cognitive 
involvement. 

On day 2 of the experiment, all subjects transfer to the “both” 
condition; that is, they all solve full-scale differentiation prob- 
lems. Thus, the “both” condition is the control against which 
the performance of the other groups is judged. By comparing 
the performance of the “‘selection only”’ and “application only’’ 
groups on the second day with the performance of the ‘‘both”’ 
group on the first day, it is possible to measure with greater 

sensitivity the magnitude of transfer between the operator se- 
lection and application components. Similarly, by comparing 
the performance of the “‘neither’”’ group on the second day with 
the “both” group on the first, it is possible to factor out the 
perceptual-motor subcomponent from overall measures of learn- 
ing and transfer. 

Method 

Subjects 

Subjects were 32 high-school juniors and seniors from a local 
private girls’ school. All subjects were taking either trigonometry 
or precalculus concurrently with the experiment and were main- 
taining a B average or better. As in the first calculus experiment, 
none of the subjects had had any direct calculus instruction. 

Design 

The two-day experiment used a2 X 2 between-subjects design. 
The first factor was whether subjects received operator selection 
practice on the first day, and the second was whether subjects



Declarative Transfer 203 

received application practice. On the second day of the experi- 
ment, all subjects transferred to the condition involving both 
operator selection and application practice. 

Materials 

Subjects in all conditions on both days solved differentiation 
problems. Rather than having subjects spend extra time trans- 
lating the problem text into a set of equations, this experiment 
simply presented subjects with the initial states of problems. 
This meant that, over the course of a day, subjects could solve 
more problems and so have comparatively more practice on 
operator selection and application, which would provide for a 
more stringent test of the independence of these two compo- 
nents. 

In that condition where subjects practiced both operator se- 
lection and application on the first day, the tutor behaved just as 
it did in the first experiment. Subjects were given a goal state- 
ment, such as “Find dx/dz when z = 5,” and were then set free 
to select operators from the Operations menu. Following each 
selection, subjects were required to apply the operator, that is, 
calculate its result. They then typed the result of their calcula- 
tions in the Student Workspace window. 

In the condition where subjects practiced only operator selec- 
tion, they made their own selections but were supplied the 
resulting equations. In other words, the tutor acted as a kind of 
sophisticated calculator that would supply the results of any 
operators that had been selected. Although subjects performed 
no calculations themselves, they were still required to read the 
answer presented to them in the Prompt window and type it 
into the Student Workspace window. Subjects were given two 
chances to type the equation correctly, which was eventually 
displayed in the Equations So Far window, as always. This 
meant that, although subjects had no practice on the more cog- 
nitive aspects of operator application, they did have practice 
typing equations. 

In the condition where subjects practiced only operator appli- 
cation, the reverse situation prevailed; that is, the tutor supplied 
the selections and the subjects supplied the calculations. Sub- 
jects were told by the tutor which operators to choose from the 
Operations menu and then which equations to select from the 
Equations So Far window. These instructions were displayed in 
the Prompt Window. Subjects had two chances to make each 
selection, and in the event of two mistakes, the tutor simply



204 The Transfer of Cognitive Skill 

continued ahead as if the right selection had been made (sub- 
jects made practically no errors with the mouse under these 
conditions). The operator-equation selections themselves were 
drawn from the optimal solution paths of the differentiation 
problems. However, since no information concerning problem 
goals was ever displayed in this condition, the underlying sig- 
nificance of these selections was never understood by subjects, 
who were told that the selections were random and that this was 
simply an exercise for moving and clicking the mouse (which it 
was). Once the operator had been selected, subjects were re- 
quired to calculate the result and type it into the Student Work- 
space window. 

In the final condition, the tutor supplied both the operator 
selections and the results of operator applications. Subjects were 
engaged in following a set of mindless instructions concerning 
mouse movements and equations to be typed. However, the 
concatenation of these simple actions constituted the same se- 
quence of physical actions involved in the optimal solution of 
the problems. Indeed, a selectively informed observer might be 
fooled into thinking subjects were actually solving problems in 
this condition were it not for the breakneck speed in which they 
worked. 

Figure 7.2 summarizes the various components practiced on 
day 1 in the four conditions. The perceptual-motor components 
of operator selection and application are practiced in all four 
conditions, so the experimental manipulation in fact pertains to 
only the cognitive components of these subskills. 

  

  

Selection 

yes no 

Cognitive Cognitive 
yes both application only 

Perceptual-motor Perceptual-motor 

both both 

Application 

Cognitive Cognitive 
no selection only neither 

Perceptual-motor Perceptua!-motor 
both both         

Figure 7.2. Practiced components on day 1 of calculus experiment 2.



Declarative Transfer 205 

Procedure 

The experiment lasted two hours per day for two days. On day 
1, subjects read the calculus instruction booklet from the first 
experiment, which took approximately 30 minutes. Subjects 
spent the remaining 90 minutes solving problems from one of 
the four conditions. The problems were presented in the same 
fixed order as in the first experiment. In each condition, the 
experimenter demonstrated use of the interface on two prob- 
lems before subjects began. No explicit instruction was given on 
either the strategic aspects of operator selection or the compu- 
tational details of operator application. On day 2 of the experi- 
ment, all subjects spent the entire two hours solving problems 
in the “both” condition. Once again, subjects were given a 
demonstration of the interface on two problems before actual 
problem solving began. The order of the problems was the same 
as day 1. 

Results 

As in the first calculus experiment, all summary statistics are 
based on performance on the first six problems. 

Transfer from application to selection 

In order to test the hypothesis that operator selection and ap- 
plication are not independent components, we first examine the 
transfer from application to selection. The primary question of 
interest is whether a day of practice at applying operators results 
in better performance at selecting operators. As in the first cal- 
culus experiment, the dependent measures used to measure 
selection performance are time per operator selection and extra 
moves per problem. 

Figure 7.3 presents mean time per operator selection for the 
four conditions on both days of the experiment. On day 1, 
subjects spent approximately twice as much time making selec- 
tions themselves as following directions from the system (31.8 
vs. 14.6 seconds), which is not surprising. In addition, subjects 
who had to perform the calculations themselves took more time 
making operator selections than those who did not (27.6 vs. 18.7 
seconds). A two-way between-subjects ANOVA on this data 
confirmed the main effects for both selection and application 
practice (F(1,28) = 16.7, p < .001 and F(1,28) = 4.5, p < .05, 
respectively). The main effect for application practice is the first



206 The Transfer of Cognitive Skill 

  

  

        

  

  

        

Selection 

yes no 

yes 39.1 6.1 276 

Application 

no 24.4 13.0 18.7 

31.8 14.6 

(a) day { 

Selection 

yes no 

yes 17.2 21.5 19.4 

Application 

no 18.4 41.8 30.1 

17.8 31.7 

(b) day2 

Figure 7.3. Time per operator selection (sec.) on both days (the four conditions refer to 
type of practice on day 1; on day 2 all subjects transfer to the yes-yes condition). 

sign of some kind of interdependence between selection and 
application. However, this is merely a performance effect and in 
no way implies that selection and application share knowledge 
structures. One interesting possibility is that subjects who are 

spared the calculations become more reckless with their opera- 

tor selections, since each move in the problem space is compar- 
atively cheap. It was discovered in the first experiment (and 
observed again here) that operator applications on average take 
more than twice as long as the selections. 

Looking to the results from day 2, we see that subjects who 
have had one day of selection practice make selections more 

quickly than those who have had no practice (17.8 vs. 31.7 

seconds), which is certainly to be expected. Most important, 

however, is that those subjects who have had one day of appli- 

cation practice make operator selections more quickly than those 

who have had none (19.4 vs. 30.1 seconds). A two-way between-



TT emmene e 7 A nt 

Declarative Transfer 207 

subjects ANOVA showed that both of these differences were 
statistically significant (both F(1,28) > 10.2, p < .01). Coupled 
with the results from the first experiment, this means that, 
although a second day of application practice makes no differ- 
ence in terms of operator selections, a first day can be very 
beneficial. Indeed, if we compare the off-diagonals on day 2, we 
see that the group which made only applications on day 1 is 
performing virtually identically to the group which made only 
selections (21.5 vs. 18.4 seconds). This is quite interesting, given 
that a simple-minded procedurally based identical elements 
model of transfer would predict that a group which practiced 
selection should be substantially better on measures of selection 
than a group that practiced something else. 

Finally, if we compare the day 2 performance of the group 
that did neither selection nor application on day 1 (41.8 seconds) 
with the day 1 performance of the group that did both (39.1 
seconds), we see that there is no measurable savings in terms of 
time per operator selection associated with practicing the 
perceptual-motor component of selection. In other words, a day 
of practicing mouse movements and learning to locate operators 
in the Operations menu had a negligible effect on the time 
subjects took to make strategic selections for themselves on the 
second day. 

Another measure of selection performance is extra moves per 
problem, which gives a somewhat more qualitative indication of 
the strategic abilities of subjects. Figure 7.4 presents the results 
for this dependent measure. On day 1, subjects wasted substan- 
tially more moves when they were making selections for them- 
selves than when they were told which selections to make, 
which is no surprise. In fact, one might regard the low number 
of extra moves in those conditions where the tutor dictates the 
selections (.2) as the baseline of menu slips, which might be 
subtracted from the other values to give a truer indication of the 
actual number of cognitive-based mistakes. The other result on 
day 1 is that, among those subjects who made their own selec- 
tions, those who were spared the calculations made more extra 
moves per problem (7.6 vs 4.1). This difference was significant at 
only the .2 level, though, and should be regarded as merely 
suggestive. It is consistent, however, with the view that subjects 
in the “selection only” condition were less deliberate in their 
problem solving. 

On day 2, a two-way between-subjects ANOVA yielded no 
significant effects. We can conclude from this that the transfer 
from application to selection manifests itself primarily as a re-



208 The Transfer of Cognitive Skill 

  

  

        

  

  

        

Selection 

yes no 

yes 4. 0.2 2.2 

Application 

no 7.6 0.2 3.9 

5.8 0.2 

(a) day 1 

Selection 

yes no 

yes 2.7 3.0 2.8 

Application 

no 4.8 3.0 3.9 

3.8 3.0 

(b) day2 

Figure 7.4. Extra moves per problem on both days. 

duction in time and not extra moves. This agrees generally with 

the result from the first experiment that subjects working with 

the preliminary version of the tutor exhibit most of their im- 

provement in terms of speed and not accuracy. 

Transfer from selection to application 

We have just seen that a day of practice on operator application 

improves selection in terms of time. We now explore the effect 

of selection practice on application. As measures of application 

performance, we use both time per operator application and 

percentage of incorrect applications. 

Figure 7.5 presents results in terms of time per operator ap- 

plication. An ANOVA on the day 1 data yielded a main effect for 

the application factor (F(1,28) = 70.3, p < .0001), which means 

simply that it took subjects longer to calculate the result of an



Declarative Transfer 209 

  

  

        

  

  

        

Selection 

yes no 

yes 74.2 83.3 78.8 

Application 

no 24.8 21.8 23.3 

49.5 52.5 

(a) day 1 

Selection 

yes no 

yes 41.4 41.3 41.4 

Application 

no 57.9 74.1 66.0 

49.7 57.7 

(b) day2 

Figure 7.5. Time per operator application (sec.) on both days. 

operator application and type it than it took them to read it and 
type it. 

An ANOVA on the day 2 data once again yielded a main effect 
for the application factor (F(1,28) = 13.5, p < .001). Subjects 

with one day of application practice performed faster than sub- 
jects with no application practice (41.4 vs. 66 seconds). There 
may be a small effect of selection practice (49.7 vs. 59.7 seconds), 
but it is not statistically significant (F(1,28) = 1.4, p = .24). This 
means that, whereas application transfers to selection in terms 
of time, selection does not transfer much to application. If true, 
this is clearly a case of asymmetric transfer and contrasts with 
the symmetric transfer observed in the selection time results. 

Our claim that such a contrast exists is less than totally con- 
vincing as it stands, because the difference in transfer is based 

upon the rejection of the null hypothesis in the case of selection 
time versus the failure to reject in the case of application time. It



210 The Transfer of Cognitive Skill 

would be more advantageous to have a direct comparison be- 
tween the magnitudes of transfer, but standard statistical tech- 
niques do not apply because of the difficulty in calculating 
transfer scores for individual subjects. This problem was re- 
solved in the following manner: transfer scores for individual 
subjects in particular conditions were calculated by comparing 
them with subjects of equal rank in the relevant controls. For 
example, to determine the magnitude of transfer from applica- 
tion to selection time, subjects in the “application only” condi- 
tion were rank ordered in terms of time per selection on day 2. 
These subjects were then matched with subjects of identical 
rank from the “selection only” and ‘neither’ conditions, so- 

called ‘‘macrosubjects’” were created. Here is the formula for 
transfer from application to selection for each macrosubject: 

neither; — application only; 

neither, — selection only; 
  

(7.1) T nacrosubject — 

The denominator of the formula calculates the speedup in se- 
lection time associated with one day of selection practice and 
uses time from the ith subjects in the “neither” and “selection 
only” conditions. The numerator calculates the speedup in se- 
lection time associated with one day of application practice and 
uses time from the ith subjects in the ‘“‘neither” and ‘application 
only” conditions. Transfer, then, is expressed as a percentage of 
the theoretical maximum speedup associated with practicing the 
same task. These calculations yielded transfer percentages for 
each of the eight macrosubjects. An analogous procedure was 
performed to calculate eight scores for transfer from selection to 
application. This time, however, the off-diagonal conditions 

were switched in the formula, and time per application served 
as the dependent measure. 

The mean transfer scores calculated by this method were 85 
percent from application to selection and 48 percent from selec- 
tion to application. This difference was confirmed by a standard 
independent-samples t-test (t = 4.3, df = 14, p < .001). This, 
then, is statistical confirmation of the asymmetric transfer result. 

We now return to our analysis of the time per application 

results. Comparing the day 2 performance of the group that did 
neither selection nor application on day 1 (74.1 seconds) with 
the day 1 performance of the group that did both (74.2 seconds), 
we see that there is no measurable savings in terms of time per 
operator application associated with practicing the perceptual- 
motor component of application. A day of typing equations had



Declarative Transfer 211 

a negligible effect on the time subjects took to make their calcu- 
lations and type in the results. This is somewhat puzzling, be- 
cause the typing of equations was an unpracticed subcomponent 
of operator application, and its practice should have had some 
payoff. Apparently, the cognitive aspects of this task completely 
dominated patterns of learning and transfer. 

Figure 7.6 presents results in terms of percentage of incorrect 
applications. Looking at the day 1 data, we see the large differ- 
ence between the percentage of mistakes when subjects perform 
their own calculations and type the results (48 percent) and 
when they just type the results (11 percent). Using this 11 per- 
cent figure as a baseline, we can conclude that nearly a quarter 
of all application errors are typing slips. 

A two-way between-subjects ANOVA on the day 2 percent- 
age of incorrect applications data yielded no main effects and no 
interactions. This implies both that a day’s practice at perform- 

  

  

        

  

  

Selection 

yes no 

yes 48% 47% 48% 

Application 

no 11% l|% 11% 

30% 29% 

(a) day 1 

Selection 

yes no 

yes 40% 32% 36 % 
Application 

no 44% 44% 44%         

42% 38 % 

(b) day2 

Figure 7.6. Percentage of incorrect applications on both days.



212 The Transfer of Cognitive Skill 

ing calculations led to no measurable improvement in terms of 
number of mistakes and that operator selection does not transfer 
to application in terms of number of mistakes. 

Summary of Second Calculus Experiment 

One interesting result from this experiment is that there is asym- 
metric transfer between operator selection and application. Ap- 
plication transfers to selection, but not vice versa. An additional 

qualification on this result from the first experiment is that only 
the first day of application practice produces a measurable effect 
on selection; the second day does no good. This pattern of 

results is completely consistent with our simulation model. The 
transfer from application to selection is explained as follows. On 
the first day of application practice, subjects first acquire declar- 
ative representations of the operators which specify in detail the 

critical features of the inputs and outputs. Ideally, these declar- 

ative representations are sufficient for the successful interpreta- 
tion of the formulas by the PUPS analogy mechanism. These 
declarative representations are useful in selection on the second 
day in two ways. First, in the course of making an operator 

selection, some operators (such as the chain rule and substitute 

equations) are applied in reverse to determine the critical fea- 

tures of required inputs. This mechanism is absolutely critical to 

the successful execution of the backward-chaining strategy 

found in means-ends analysis. Second, the declarative represen- 

tations have more than enough detail to allow for the derivation 

of the difference table required for means-ends analysis. This 

derivation process was not explicitly modeled in the simulation 

but must occur at some point for the means-ends analysis strat- 

egy to work. Presumably, detailed knowledge of the inputs and 

outputs of operators and the differences between them is a 

prerequisite to this derivation process. 
Transfer is asymmetric primarily because the declarative 

knowledge required for selection is a proper subset of the de- 

clarative knowledge required for application. A subject who 

knows the formulas well enough to grind through the calcula- 

tions certainly knows enough to operate in the abstracted plan- 

ning space of operator selection. The planning processes draw 

on just a few critical features of the formulas and ignore much of 

the detail. For example, to select the differentiation operator 

properly, the planning processes need only know that the op- 

erator takes as input an equation stating x in terms of y and 

produces as output the derivative dx/dy. Therefore, if in some



Declarative Transfer 213 

situation the goal is to obtain a particular derivative and an 
equation relating the ordinate and abscissa of the derivative is 
available, the differentiation operator can be selected. Further 
details of the differentiation transformation are unnecessary for 
this decision. However, the knowledge used in planning is not 
detailed enough for the subsequent application of the operator. 
For example, to apply the differentiation operator, one must 
know additionally that the exponent of the abscissa in the input 
is decremented in the output and that the coefficient of the input 
is multiplied by the exponent of the input and becomes the 
coefficient of the output. In no way can these details be logically 
derived from the minimal set of features used in making oper- 
ator selections. Presumably, the declarative representations ac- 
quired by those subjects who practice only selections contain 
just the minimal set and are therefore insufficient for operator 
application. However, the representations acquired by those 
subjects who practice applications are completely sufficient for 
selection. This superset-subset relationship is at the root of the 
asymmetric transfer observed in the experiment. 

Finally, it was observed that practicing the perceptual-motor 
components of application and selection in isolation prior to 
problem solving had virutally no effect on eventual perfor- 
mance. This is somewhat counterintuitive, given the unfamil- 
iarity of the tutorial interface. In a questionnaire completed prior 
to the experiment, however, 88 percent of subjects reported 
having had prior computer experience, and 78 percent regarded 
themselves as fair typists. It is therefore conceivable that the 
perceptual-motor components were already somewhat practiced 
and that any speedup in them was completely overshadowed by 
speedup in the cognitive components (this in fact mirrors the 
results obtained in the text-editing experiments). The most im- 
portant implication of this result is that the substantial transfer 
from integration to differentiation problems observed in the first 
calculus experiment cannot be attributed to improvement in the 
perceptual-motor component. 

Declarative Transfer in Logic Theorem Proving 

An experiment by Lewis and Anderson (in preparation) sheds 
further light on the role of declarative knowledge in the transfer 
of cognitive skill. The paradigm they used was the logic 
theorem-proving task, which was introduced by Moore and 
Anderson (1954) and studied extensively by Newell and Simon 
(1972). This paradigm was adapted somewhat by Lewis and



214 The Transfer of Cognitive Skill 

Anderson to explore the declarative-procedural distinction. Spe- 
cifically, their goal was to give separate declarative and proce- 
dural practice and to observe transfer between the two memory 
systems within a single skill. 

Table 7.1 shows the logical rules to which all subjects in the 
experiment were exposed. In one condition, the “rule recogni- 
tion’ condition, subjects were asked to treat these rules as they 
would any other declarative facts; that is, the task was simply to 
encode them and recognize them. This condition constitutes 
declarative practice and was modeled after the fact retrieval 
paradigm, which has been the subject of extensive study (Ander- 

son, 1983). 

Table 7.1. Rules used by Lewis and Anderson (in preparation) in the 
logic experiment. Arrows show the direction in which 

recoding may take place. 

.AORBOBORA 

2,A ANDB~™ BANDA 
Use only with AND or OR. Trade places. No negation change. 

3.A>B7%-B>-A 
Use only with —. Trade places. Two negation changes: A part and 

B part. 

4,-AORADA 

5. AANDA~A 
No negation change. 

6. A OR (B OR C) © (A OR B) ORC 
7. A AND (B AND C) © (A AND B) AND C 

No place changes. No negation changes. Only grouping changes. 
8. AOR B © —(—A AND —B) 

Use only with OR or AND. Three negation changes: A part, B part, 

and total OR or AND expression. 
9. A>B©O-AORB 

Use only with OR or —. One negation change: A part. 
10. A OR (B AND C) © (A OR B) AND (A OR C) 
11. A AND (B OR C) © (A AND B) OR (A AND C) 

No negation changes. 

12, AANDB7A 
Use only with major AND and positive total expression. No 

negation changes. 
13. A—>B,A7B 

The ‘—” line must be positive; — must be the major connective. No 

negation changes. 
14.A—>B,B>~>C7%A>C 

Both “—>’” lines must be positive. —’s must be the major 
connectives. No negation changes. 

  

—
 

 



Declarative Transfer 215 

In the other condition, the rule selection condition, subjects 

had to derive four-step proofs along the lines of Newell and 
Simon (1972). Subjects were given a set of one or more premises 
and a statement to be proven and were asked to find a sequence 
of inference steps which would go from the premises to the 
conclusion. The proof problems were selected to provide equal 
practice on all the inference rules. This condition constitutes 
procedural practice since the rules were being applied in a 
problem-solving context. 

The experiment was run on a computer system which pro- 
vided a structured interface for proving theorems. In the rule 
selection condition, subjects saw a menu of all the logical rules 
and simply pointed with a mouse to select the next rule to 
apply. If it was a correct inference (an inference which kept the 
subject on one of the problem’s four-step solution paths), the 
system provided the subject with the conclusion that logically 
followed from the premise and the rule. If it was an incorrect 
inference, the system so informed the subject and provided the 
next correct step. Figure 7.7 illustrates a completed proof. A 
point system was instituted to motivate the student to try 

to achieve high speed and accuracy. The two dependent mea- 
sures of principal interest were number of errors and time for 
correct judgments. Time was measured from the display of the 
previous conclusion to the mouse click indicating the next rule 
selection. 

The rule recognition condition was designed to bear a super- 
ficial resemblance to the rule selection condition. Subjects were 
shown what was purported to be one of the rules from the proof 
set and hard to select either a yes or a no response from a menu 
to indicate whether the item was in fact such a rule. Fifty percent 
were correct rules, and the rest were foils created by permuting, 

substituting, adding, or deleting one syllable. Again, Lewis and 
Anderson instituted a point system to keep motivation high and 
recorded number of errors and time for correct judgments. Sub- 
jects went through a sequence of four such lines before getting 
a rest. Figure 7.8 shows the screen after four such lines. 

Lewis and Anderson assumed that, in the rule selection con- 

dition, subjects would compile rules specific to the problem- 
solving task. So a subject might acquire a_ procedurally 
encapsulated rule of the form: 

IF the goal is to prove a statement involving =X and 
=Y 

and there is no premise involving =X and =Y



The Transfer of Cognitive Skill 216 

‘(food 
ayy 

paysiuy 
ysnf 

svy 
joalqns) 

uo1p1puod 
UODayas 

a[n4 
ayy 

ui 
advfzazui 

fo 
uo1ywsn8yuoD 

*L°*Z 
an31q 

 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 
 

 
 

  

         

J
V
 

<
=
-
)
9
=
9
'
9
—
y
 

PIY 
(S)’ 

31NY 
:9 

A 
:9 

@
<
=
=
v
a
s
v
V
 

ely 
V 
<== 

G@0NVV 
clu 

(
p
y
)
 

6 31NY 
°S 

NYO A 
'S 

() ONV 
V) HO (9 ONV 

VY) 
<==> 

(HOM) 
ONVY 

 1IU 
YO WONV(@YOW) 

<==> 
OONVE 

HOV 
OW] 

weyy 
arpa 

+ 
A
A
 

b 
QW0V) 

@
H
O
V
-
<
=
=
>
8
 

=
v
 

6Y 
(@-ONVV 

-)-<==> 
GHOV 

ou 
| 

| 
J ONY 

(G ONY) 
<==> 

(CNV) 
O
N
V
V
 

2H 
(
1
)
 

6 F1NY 
“€ 

S
A
”
 

€ 
940 

(840 ¥) 
< 

== 
>
(
0
H
0
8
)
 

HOV 
94 

Vv 
< 

== 
V
O
N
V
Y
 

‘GY 
NSAID 

-2 
A
m
 

S$ 
-¢ 

V 
<== 

WHOV 
bY 

vee 
-
<
-
o
~
 

VY 
NIAID: 

SHON 
‘t 

VONVG 
<== 

G0NVV 
2 

vu0Od 
<== 

aHOV 
1H 

A 
:3A1u30 

  
  

"wiajqosd 
siyy 

UO 
syUjOd 

gp- 
pa109S 

NOA 

   

iv! 
PIP 

NOA 
‘suojejnjyesBuogD 

  

  :, 
: 

7. 
ote te tate te te feta tenet n

n
8
n
8
o
 
888 

0
.
8
8
.
0
 
0 O

e
 
e
e
 
a e

r
e
 
a ann 

e
t
e
r
s
 ete 

t ete 
erste 

tata” 
E
e
 

e
a
 

ha 
he 

eh 
ta 

tia e
S
 

IE 
O
D
D
 

Dae 
S
O
S
 

OG O
O
 
N
O



217 Declarative Transfer 
"U01JIpuod 

U
O
H
W
U
O
d
a
I
 

apni 
ayy 

ul 
aovfuaqui 

fo 
uo1ywn$yfuor 

*g*z 
amnBiq 

 
 

J
V
 

< 
=
=
)
 

=> 
9'9 

+
 

V_Hiy 
 
 g@
<
=
=
-
V
'
d
 

=> 
V
l
y
 

V
<
 

== 
g@QNVV 

‘2iu 
(0 

ONV 
V) 

40 
(8 

ONY 
VY) 

<
=
=
>
 

(9409) 
GNVW 

‘LIU 
(9 

40 
V) 

GNV 
(9 

HOV) 
<
=
=
>
(
9
0
N
V
 

9) 
HOV 

‘Olu 
g
@
w
O
V
-
<
=
=
>
g
—
=
 VV 

‘6H 
(
9
-
A
N
V
V
-
)
-
<
=
=
>
 

9
H
O
V
 

‘8H 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

sav 
G@ONy 

W 
<no> 

GONY 
a 
ONY 

WwoaTl 
(S ONY 

(LONV 
f)) JOH 

<== 
(SONV 

LD ONY 
xX 

940 
(940 

v) 
<==> 

(
)
H
O
M
)
 

HOV 
9 

V 
<== 

VONVV 
‘SH 

WOST 
9 
<== 

DONVH 
A 

V 
<== 

VHOV 
 :by 

V
-
+
a
-
 

<== 
d=vV 

eH 
ph 31nd 

+ 
f
n
 

<== 
p
+
 

1'| 
=f) 

x 
VONV8 

<== 
G@0NVV 

2H 
Vd0 dg 

<== 
GhOV 

tu 
(Wu) 

2 31nu 
+ 

(X GNV 
S) 

ONY 
A<== 

X ONV 
(SQNV 

A) 
7 

 
 

       

  
 
 

‘uONneUsOjsUeL) 
jeBai)) 

Ue 
S,}) 

SAA 
ZuONnews0jsued 

je6a| 
e 
UOIssaidxa 

jxaU 
ayy 

S| 

 
 

 



218 The Transfer of Cognitive Skill 

but there is a =premisel involving =X and =Z 
and a =premise2 involves = Y and =Z 

THEN set as a subgoal to apply rule 14 to = premisel and 
= premise2. 

This is an encapsulation of the connection between the means- 
ends goal of getting terms together in a conclusion and the 

particular rule of logic which is relevant to that goal. In contrast, 

it was expected that the rule recognition subjects would con- 
tinue to retrieve the declarative encodings of the rules and match 
them against the list probes. No domain-specific rules applicable 
to problem solving would be derived in this condition. 

The design involved four groups of subjects working an hour 

per day for five days. On the last day, all subjects performed 
both tasks, alternating between doing proofs and recognizing 
rules. One group had spent the first four days doing just proofs. 
A second group had spent the first four days doing just rule 

recognition. The third group had spent the first two days doing 

proofs and the second two days rule recognition. The fourth 
group spent the first two days doing rule recognition and the 
second two days doing proofs. 

Given such a design, Lewis and Anderson were able to mea- 
sure the effect of declarative practice (rule recognition) on 

problem-solving performance (rule selection) and vice versa. 

Specifically, the experiment examined the effect of 0 versus 2 

days’ prior practice of each task on the performance of each task. 

Figure 7.9 shows the results. Part (a) shows the effect in terms of 

time per rule selection. We can calculate the effect of practicing 

rule recognition on rule selection with our standard transfer 

formula: 

Initial — Transfer _ 161 — 121 

Initial — Learning 161 — 66” 
  

(7.2) Tg, learning = 

This formula indicates a moderate level of positive transfer. 

Furthermore, the comparison between 0 versus 2 days’ prior 

recognition practice is significant in the case of both 0 days’ 

practice on selection (161 vs. 121 seconds) and 2 days’ practice (66 

vs. 49 seconds). The results are rather different in part (b), which 

presents results in terms of time to recognize a rule. Here the 

transfer score is only 27 percent and the effect of 0 versus 2 days’ 
selection practice is not significant for either comparison. 

This apparent asymmetry in transfer between declarative and 
procedural tasks is to be expected. On the one hand, the declar-



Declarative Transfer 219 

Prior practice on selection 

O days 2 days 
  

  

        

O days 161 66 114 
Prior practice 
on recognition 2 days 12 49 85 

141 58 99 

(a) time per rule selection (sec) 

Prior practice on selection 

O days 2 days 
  

  

        

O days 5.14 4.25 4.70 

Prior practice 
On recognition 

2 days 1.86 2.39 2.13 

3.50 3.32 3.4] 

(b) rule recognition latencies (sec) 

Figure 7.9. Transfer results from the logic experiment. 

ative knowledge is constantly being practiced in the declarative 
task and is so being strengthened and debugged for its eventual 
use in the procedural task. On the other hand, task-specific 
productions arise in the procedural task, and repeated practice 
of these productions offers no benefit on the declarative task. 
This explanation is similar to the explanation for the asymmetry 
in transfer observed between selection and application in the 
calculus experiment, namely that the application task provided 
a better situation for practicing the declarative knowledge com- 
mon to both tasks. 

Our position is that declarative transfer should be short-lived 
and its effects should be restricted to the initial phases of skill 
acquisition. The Lewis and Anderson experiment offers another 
opportunity to test this prediction. We have already observed 
that there is moderate positive transfer between rule recognition 
and selection after two days of practice. By comparing the re-



220 The Transfer of Cognitive Skill 

sults of those groups that had four days of practice on either of 
the tasks prior to transfer (not shown in Figure 7.9) with those 
that had two days of practice, we can determine the marginal 
benefit of the two additional days of practice. To summarize the 
results, there is no benefit from this extra practice on either 
transfer task. Subjects with two days of prior recognition prac- 
tice take an average of 121 seconds on their first day of selection. 
Subjects with four days of practice take an average of 125 sec- 
onds which, if anything, is slightly worse. Similarly, subjects 
with two days of prior selection practice take 4.2 seconds on 
their first day of recognition; subjects with four days of practice 
take an identical 4.2 seconds. 

Thus, the total benefit is derived from initial practice, and 

sustained practice does not produce additional benefit. This is 
consistent with the idea that the basis for declarative transfer 
is the acquisition and subsequent debugging of the declarative 

knowledge, and this is done relatively early in the learning of 
the first task. Again, these results are consistent with the re- 

sult in the calculus experiment that there was no marginal 
benefit associated with additional days of operator application 
practice on transfer to selection. In that experiment, a single 
day of application practice accounted for all of the positive 

transfer. 

Conclusion 

The calculus and logic experiments are generally consistent with 
the idea that declarative knowledge provides a basis for transfer 
between different uses of the same knowledge. Indeed, one 
could argue that the defining feature of declarative knowledge is 
that it serves as the basis for transfer to multiple tasks. Thus, our 
earlier claims concerning use specificity were somewhat over- 
stated in that they ignored the role of the declarative compo- 
nent. Although its effects are short-lived and sometimes 
overshadowed by the effects of extended practice, initial declar- 
ative training does represent somewhat of an antidote to the 
encapsulation of knowledge. 

While declarative knowledge is freely accessible in any 
problem-solving situation, however, the processes of analogi- 
cal interpretation make the actual application of that knowl- 
edge somewhat problematic. The basic problem is that, since 
declarative knowledge is not committed to a particular use, 
vast amounts of it are potentially relevant in any problem- 
solving situation, and this leads to serious problems of search.



Declarative Transfer 221 

The search problem disappears when the source of the anal- 
ogy is supplied, as it is in most “learning by example” para- 
digms. Indeed, the analogical transfer in our calculus 
experiments involved supplied sources, and this undoubtedly 
is largely responsible for the positive results that we obtained. 
However, when the source of the analogy is not supplied ex- 
plicitly, the probability of retrieving and successfully applying 
the appropriate knowledge is often quite low. The experimen- 
tal evidence is not very encouraging about the prospect of 
spontaneous analogical transfer. A study by Gick and Holyoak 
(1980), whose results are more or less typical, examined sub- 
jects’ ability to solve Duncker’s radiation problem after reading 
the solution of a military analogue. Without special prompt- 
ing, few subjects were able to notice the analogy between the 
two problems and solve the radiation problem. Holyoak, 
Junn, and Billman (1984) found even poorer ability to use 
analogies when they studied children. However, Brown and 
Kane (in press) criticized these experiments on a number of 
grounds. They argued that the experimental situations are un- 
natural in that people do not normally present two stories 
with an analogical similarity and fail to comment on the fact. 
Also, the research with children has often required world 

knowledge that the children did not even possess, let alone 
apply. When Brown and Kane repaired these problems, they 
were able to obtain analogical transfer with children as young 
as three years of age. These results suggest that if the prob- 
lems of search can be overcome, the processes of analogical 
transfer are quite robust and can serve quite well as a learning 
and transfer mechanism.



8 / The Theory in Review 

A“ we start this penultimate chapter, we now have before us 
a more or less complete theory of transfer of cognitive skill. 

The theory draws heavily on the ACT* theory of skill acqui- 
sition, which states that initial representations of skill are de- 
clarative and are interpreted by general-purpose analogy 
mechanisms. Through this process of analogical interpretation, 
new domain-specific productions are compiled which are some- 
what abstract but nevertheless use-specific. Although both de- 
clarative and procedural components can contribute to transfer, 
in many situations (especially those characterized by hours of 
practice), it is a useful approximation to ignore the initial declar- 
ative component and simply base transfer predictions on the 
procedural overlap of the skills. The procedural overlap is fig- 
ured by doing simple set comparisons of the production system 
representations of the skills. In addition to counting the number 
of shared productions, it is often useful to take into consider- 
ation the relative frequency of production firings in the transfer 
task. In short, what we have presented is a modern version of 
Thorndike’s theory of identical elements. We have identified the 
elements of cognitive skill to be production rules, which, as 
noted elsewhere (Anderson, 1976), are simply computationally 
enhanced versions of the stimulus-response bonds proposed by 
Thorndike. 

The main points of the transfer theory can be sharpened by 
considering relevant research conducted in other laboratories. 
Of special interest is the work of David Kieras, Peter Polson, and 

their colleagues. For several years they have been indepen-



The Theory in Review 223 

dently pursuing a research program very similar to our own, 
and with notable success. 

Identical Productions Theory of Transfer 

In previous chapters, we have shown that the transfer of pro- 
gramming skill in the LISP tutor, the transfer of text-editing 
skill, and the transfer of calculus skill can be modeled quite well 
by assuming that productions are the identical elements. Our 
learning and transfer results were consistent with the following 
properties of productions as the identical elements: 

1. Independence. Productions are learned independently and 
transfer independently. More specifically, the performance of a 
particular production in a transfer task should depend only on 
the level of strength accumulated in a prior training task. Aside 
from difficulties arising from differences in problem representa- 
tion, access to particular rules should not be affected by problem 
context. The independence of production rules provides a kind 
of modularity which greatly simplifies the modeling process, 
since interactions between rules need not be considered as they 
appear in new combinations in transfer tasks. 

2. All-or-None Learning Followed by Strength Accrual. Produc- 
tions are compiled ina single trial. Following compilation, produc- 
tions continue to accumulate strength with continued practice. 
This accounts for the effects of degree of training on transfer. 

3. Abstractness. Productions are compiled as a byproduct of an 
analogy process which compares two distinct but related declar- 
ative representations (the source and the target) and extracts 
common features. Thus, productions are necessarily generaliza- 
tions and as a result are guaranteed to have a certain range of 
application. The actual level of abstraction at which a production 
is cast depends upon the declarative encoding of the source and 
target and, as such, is an issue of representation. 

4. Lack of Negative Transfer. One prediction of the identical 
productions theory is that, in reactive and instructive learning 
environments where differences between training and transfer 
tasks are identified and quickly repaired, negative transfer 
should be minimized. In fact, negative transfer should be largely 
restricted to a specific type of Einstellung where a particular 
method acquired during training turns out to be legal but nonop- 
timal in the transfer task. These predictions were supported in a 
study examining transfer between two text editors designed for 
maximal interference.



224 The Transfer of Cognitive Skill 

5. Condition-Action Asymmetry of Productions. One property of 
production rules that has strong implications for the identical 
productions theory is that access to knowledge is asymmetrical. 
In particular, the conditions of a rule imply the actions but not 
vice versa. This property implies the use specificity of knowl- 
edge (that is, no transfer) in certain situations where two sets of 
production rules are based on the same abstract knowledge but 
have been dedicated to different uses. This prediction was borne 
out in studies of calculus and LISP programming where highly 
related components of the skills showed little or no transfer to 
one another. 

6. Role of the Declarative Component. The methodology used 
predominantly in our research has been to give extended prac- 
tice in both training and transfer tasks. Such a methodology 
necessarily enhances the role of procedural knowledge while 

diminishing the role of declarative knowledge in transfer. Ac- 
cording to the ACT* theory of skill acquisition, however, all 

productions arise initially from declarative encodings which, 
unlike productions, are not use-specific. It follows that a variety 
of different productions could be compiled from the same de- 
clarative knowledge. As demonstrated in our experiments on 
calculus and logic, in those situations where we are examining 
transfer between distinct production sets compiled from the 
same declarative knowledge, the declarative component cannot 
be overlooked. In these situations, the declarative component 
provides somewhat of an antidote to the encapsulation of knowl- 
edge. One prediction of the theory, supported by our experi- 
ments on calculus and logic, is that any declarative transfer 

effect should be quite short-lived. Specifically, all the beneficial 
effects of declarative transfer should be restricted to the first day 
of practice on the training task. Following the first day, subjects 
are merely strengthening their procedural representations, 
which provide no basis for transfer. 

Productions as Identical Elements 

David Kieras, Peter Polson, and their colleagues have been en- 
gaged in an extended research program which likewise has been 
dedicated to the identification of production rules as the ele- 
ments of learning and transfer. In two representative experi- 
ments, Polson and Kieras (1985) looked at subjects learning to 
perform a series of text-editing commands, while Kieras and 
Bovair (1986) looked at subjects operating a simple device. In 
both cases, subjects were taught a series of overlapping proce-



The Theory in Review 225 

dures. For instance, in Polson and Kieras (1985) subjects learned 

procedures for both moving and copying a set of lines. The 
shared component in these two procedures is the specification 
of the lines to which the procedure applies. 

Kieras, Polson, and Bovair brought considerable leverage to 
the analysis of these tasks in the form of precise production rule 
models for task execution. Using these models, they tried to 
predict task performance as a function of the number of new 
productions and the number of old productions required for the 
task. They found a contribution of both variables, but found that 
each new production contributed twice as much as each old 
production to execution time. For example, Kieras and Bovair 
(1986) estimated about 20 seconds for each new production and 
only 10 seconds for each old production. To predict subject 
performance accurately, they had to include a large intercept as 
well as these production times. The intercept presumably re- 
flects aspects of the task that are not modeled by these produc- 
tions. 

One aspect of the Kieras and Bovair data might appear to be 
at odds with the position advanced here. They make a distinc- 
tion between what they call old production rules and what they 
call generalizations. This turns on their production system nota- 
tion which represents the rules for a particular task totally with 
constants (that is, no variables). Generalizations are production 
rules that can be derived from others by replacing certain con- 
stants by variables. They note that, in all their analyses of trans- 
fer, generalizations cost no more time than old rules and are 
much faster than new rules. They note that such cost-free gen- 
eralizations are surprising from an ACT™ point of view. How- 
ever, the conclusion that subjects make such generalizations 
depends on their assumption that rules are originally acquired 
in constant-only form. If one assumes that rules are acquired in 
variabilized form, then no additional learning is required as the 
rule applies directly to the transfer task. Thus, the ACT™ learn- 
ing mechanisms which produce generalized productions do ac- 
count for these results. 

In what is perhaps their most impressive demonstration to 
date, Polson, Bovair, and Kieras (1987) accounted for both lat- 

eral and vertical transfer effects in the same experiment. Once 
again, their domain of study was text editing. They taught sub- 
jects five editing methods (insert, delete, copy, move, and trans- 
pose) for each of two full-screen editors. The two editors shared 
methods for positioning the cursor and inserting text, and also 
had identical control structures. The major difference between



226 The Transfer of Cognitive Skill 

the editors was that, for the editing methods other than insert, 
one editor required specifying the command and then its argu- 
ment (the verb-noun editor) and the other required the reverse 
(the noun-verb editor). Thus, the editors were quite similar, and 
large amounts of positive transfer between them was expected. 
Two experimental groups learned the editors in either order, 
spending one day on each editor. Additionally, training on the 
five editing methods was blocked on each day, so that measure- 
ments of transfer between commands within a particular editor 
were possible. Two different training orders for the five com- 
mands were included in the design, as well as a control group 
that practiced the same editor on both days, which yielded a 

total of 60 cells (3 groups x 5 commands X 2 command orders 
x 2 days). 
Using explicit production system models, Polson et al. set out 

to predict training times for each of the 60 cells. Training time 

was defined as the time subjects took to reach a criterion of 10 
consecutive error-free edits. Subjects were timed as they first 
read a description of the command and then practiced it inter- 
actively at the terminal. It was predicted that training time would 
be primarily a function of the number of new production rules 
subjects had to learn for each command. The number of new 
rules for each method was derived from the theoretical analysis 
and depended critically on the serial position of the method 
within a particular training order. Rules were considered famil- 
iar (that is, not new) either if the rule had been learned on a prior 
editor or if the rule had been learned on a prior command from 
the present editor. Thus, lateral and vertical transfer effects were 
accommodated within the same framework. 

Training times were fit to the regression equation: 

(8.1) Mpraining =nit+c 

Here n is the number of new rules for a particular editing 
method, ¢ is the time per rule, and c is a constant intercept. 
Using the above equation, the number of new rules in each 
method accounted for 77 percent of the variance in the 60 cell 
means. The regression analysis yielded values of 40 seconds for 
t and 474 seconds for c. 

These impressive results provide further support for the iden- 
tical productions theory of transfer. The fact that rules were 
observed to transfer equally well from a variety of sources both 
inside and outside the confines of a particular editor provides 
strong evidence for the claim that production rules operate



The Theory in Review 227 

independently. The Polson et al. theoretical analysis of text 
editing was guided largely by the rational and empirical task 
analysis of Card, Moran, and Newell (1983), as was ours. This 

suggests that transfer predictions should be informed by well- 
documented models of performance. 

There is a substantial difference between the data Kieras and 
Polson are addressing and our data. Their typical measure is 
time to reach some criterion of mastery, while ours is time to 
perform a unit task. Our measurements often extend long after 
their mastery criteria would have been reached. With this dif- 
ference in mind, it is easy to understand why their equations 
tend to take the form of linear functions of number of new 
productions plus a large intercept. The number of new produc- 
tions determines when the mastery criterion is reached, and the 

large intercept reflects the time spent performing the parts of the 
task not involving the new productions. One might view the 
slope as reflecting the compilation time for each new production 
and the intercept as the cost of performing the task once the 
productions are compiled. In contrast, our approach is to predict 
total task time by adding together component times for all pro- 
ductions weighted by their level of practice. In most of our 
modeling situations, the compilation process is long past. 

Effects of Lesson Sequencing 

Taken to its logical conclusion, our claim that production rules 
are learned and transferred independently leads to a host of 
counterintuitive predictions concerning the sequencing of les- 
sons in a curriculum. One such prediction is that total training 
time is a constant for any set of skills irrespective of training 
order. This is because training time depends solely on the num- 
ber of new rules in a set of skills, and the total number of new 

rules is the same regardless of training order. Given this posi- 
tion, one could conceivably teach calculus to elementary-school 
children with no long-term negative effects. Of course, it would 
take these young children longer to master the subject than the 
average calculus student, but this is simply because there are 
more new rules for the young children to master. The strong 
prediction of the theory is that there are no second-order, inter- 

active effects; that is, the total time to master all the rules would 
be identical for both groups. The only difference is that training 
is spaced and presented in a variety of contexts for the older 
group. 

This of course flies in the face of theories of curriculum design



228 The Transfer of Cognitive Skill 

like Gagné’s that purpose rigid skill hierarchies which identify 
strict prerequisite relations among skills. In this regard, many 
evaluations (such as the so-called scramble studies) have failed 
to find any effect of principled curriculum design on the rate of 
learning. It may be that the importance of lesson sequence is not 
as critical as previously supposed. However, we ourselves be- 
lieve that the extreme position that lesson sequencing has abso- 
lutely no effect on learning rate is too strong for a variety of 
reasons. These reasons all represent potential restrictions on the 
independence of production rules and argue for the use of skill 
hierarchies in lesson sequencing: 

1. Limits on Attention and Motivation. Learners may not have 
the patience to work through complex problems involving lots 
of new rules. In addition, learners may benefit from more fre- 
quent positive reinforcement than that offered by complex prob- 
lems. 

2. Difficulties with Credit-Blame Assignment. Mastering the sub- 
components of skills before integrating them undoubtedly sim- 
plifies credit-blame assignment in many complex problem- 
solving situations. For example, students faced with the 

prospect of debugging faulty algorithms for performing two- 
column subtraction can simplify their induction problem by rul- 
ing out knowledge of basic single-digit subtraction facts as a 
source of bugs. This can be done if students master basic sub- 
traction facts before taking on two-column subtraction. This 
problem of credit-blame assignment is only an issue in those 
learning environments that are less than totally reactive, that is, 
those environments where feedback is based on the overall 
product and not the process of problem solving. However, recent 
advances in intelligent tutoring now make it possible to give 
feedback on every production that fires in the course of problem 
solving. This kind of highly reactive learning environment 
should greatly simplify the problem of credit-blame assignment 
and should lessen this credit-blame restriction on the indepen- 
dence of productions. 

3. Meaningful Encoding of Examples. The content of a produc- 
tion rule is based upon the underlying content of the declarative 
knowledge from which it is compiled. If the underlying declar- 
ative knowledge reflects a shallow or even rote understanding 
of some procedure, then the resulting production rules will have 
that same character. One of the most important roles of prior 
knowledge is to enable students to encode declarative knowl- 
edge, or examples, meaningfully. This will cast the resulting



The Theory in Review 229 

productions at the proper level of abstraction and ensure a broad 
range of application. Perhaps the greatest danger of presenting 
complex subject matter to students who have not been properly 
prepared is that those students will have a shallow encoding of 
the examples and eventually a production set that is in a sense 
too specific or rote. Indeed, this was the result observed in the 
Kessler and Anderson (1986) negative transfer experiment. Sub- 
jects adopted a rote learning strategy when taught recursion 
before iteration, presumably because the examples of recursive 
programs were not sufficiently meaningful. 

4. Reducing Working Memory Load. One important negative 
consequence of an unstructured curriculum is that working 
memory is unduly burdened because complex component skills 
are not automated and are competing for space with higher- 
level skills (Shiffrin and Schneider, 1977). It is for this reason 

that knowledge of typing is helpful when learning a text edi- 
tor and that knowledge of addition is helpful when learning 
multiplication. In this vein, research on reading and writing 
(Flower and Hayes, 1977; Lesgold and Curtis, 1981; Lesgold 

and Resnick, 1982) has shown that overall performance suffers 
when component processes (such as word recognition and 
spelling) are not automated. Similarly, Kotovsky, Hayes, and 
Simon (1985) have shown that an insightful solution to the 
tower-of-Hanoi problem follows after subjects have automated 
the procedures for making moves. However, tutoring systems 
which offload working memory and maintain high-level goal 
structures for students should somewhat lessen this restriction 
on curriculum design. 

Productions as Abstractions 

Productions differ from Thorndike’s elements in that produc- 
tions are mentalistic abstractions containing variables and goal 
structures. Given that productions have these features, it might 
in principle be possible to revive the doctrine of formal disci- 
pline in our framework by finding a production system cast at a 
high enough level of abstraction so that it applies profitably to a 
wide range of problems. In fact, such production sets have 
already been identified and go under the name of weak methods 
(Newell, 1969). Examples of weak problem-solving methods in- 
clude means-ends analysis, hill climbing, and pure forward 
search. One very important weak method in our theory is the 
set of productions that implement the process of analogical in- 
terpretation, which was used extensively in our calculus simu-



230 The Transfer of Cognitive Skill 

lation. This analogy process derives prescriptions for action from 
declarative knowledge and thus provides a bridge from declar- 
ative to procedural knowledge. 

The one problem with reviving the doctrine of formal disci- 
pline under the banner of weak methods is that, by the time 
problem solvers reach adulthood, the various weak methods 
are already well-practiced and are a well-established part of 
the standard repertoire of problem-solving methods (Newell 
and Simon, 1972). Since the weak methods are so overlearned, 

they cannot serve as the basis for transfer between tasks. In 
order to have any impact on transfer, a shared component 
must be measurably strengthened in the training task. Even 
though the various weak methods play a large role in the 
initial stages of skill acquisition, they simply drop out of any 
calculations of transfer. 

So the question still remains: are there general problem- 

solving methods that transfer broadly across content domains 
and can be taught? A long line of research (starting with the 
work of Thorndike and James) casts a gloomy pall on the 
prospect of general transfer. The identical productions theory 
puts the following restrictions on any proposal for general 

transfer: 

1. The general method must be cast in the form of production 
rules. 

2. The production rules must be shown demonstrably (that 
is, in a simulation) to contribute to the solution of wide-ranging 

problems. 
3. The production rules must not already be well-practiced in 

subjects (this eliminates the weak methods). 

To our knowledge, no theory of general transfer has yet been 
proposed that meets these criteria. 

Although our outlook is rather pessimistic concerning the 
prospect of truly general transfer, this does not mean that rep- 
resentations of skills do not differ in terms of generality and that 
more general representations are not preferable. There have 
been several noteworthy efforts at identifying and teaching 
novel problem-solving methods to students in the domains of 
mathematical problem solving, logic, and computer program- 
ming. These methods are not truly general, in that their range of 
application is restricted to a particular content domain. Never- 
theless, their discovery represents a significant advance in terms 
of the conceptualization of these domains.



  

The Theory in Review 231 

Teaching mathematical heuristics 

Schoenfeld has been engaged in teaching heuristics for mathe- 
matical problem-solving to college students (Schoenfeld, 1979; 
1980; 1985). His basic strategy has been to take the heuristics of 
Polya (1957) as a starting point and to elaborate these heuristics 
with more specific rules and guidelines. Prior to Schoenfeld’s 
work, many attempts had been made to teach mathematical 

heuristics in general form, and without exception the results 
were largely negative (Lucas, 1972; Smith, 1973; Goldberg, 1974; 
Harvey and Romberg, 1980). This led Schoenfeld (1985) to con- 
clude that “Heuristics are complex and subtle strategies, and it 
is dangerous to underestimate the amount of knowledge and 
training required to implement them.” Schoenfeld conducted an 
experiment in which he taught five problem-solving heuristics 
to a group of experimental subjects over a two-week period. 
Subjects spent most of their time in the experiment solving 
problems; the heuristics were introduced and reinforced as part 
of the remedial instruction following failed solution attempts 
(the problems used during training were very difficult, and the 
solution rate was quite low, so there was ample opportunity for 
remedial instruction). He compared the performance of this 
group with a control group that had no exposure to the heuris- 
tics but had attempted to solve an equivalent number of prob- 
lems during the training phase. The experimental group solved 
significantly more problems than the control group on a post- 
test containing problems that could be solved with the heuris- 
tics. Actual use of the heuristics on the post-test by the 
experimental subjects was confirmed through protocol analysis. 

One interesting aspect of Schoenfeld’s results was that not all 
five heuristics were mastered equally well by subjects. Table 8.1 
presents the five heuristics taught, and Table 8.2 presents the 
post-test on which mastery of the heuristics was judged. The 
five problems were chosen so that each heuristic would be help- 
ful on a single problem (subjects were unaware of this fact). The 
entries in the two tables are ordered so that the problems and 
their corresponding heuristics appear in the same serial posi- 
tion. The only heuristics for which experimental subjects 
showed clear improvement were heuristics 2 and 4. These heu- 
ristics are the only ones that specify conditional tests which 
indicate when the heuristic might be applicable. For example, 
heuristic 2 states that “if there is an integer parameter” in the 
statement of the problem, look for an inductive argument. Sim- 
ilarly, heuristic 4 states that “if the problem contains a large



232 The Transfer of Cognitive Skill 

Table 8.1. Schoenfeld’s five mathematical problem-solving heuristics. 
  

1. Draw a diagram if at all possible. 
Even if you finally solve the problem by algebraic or other 

means, a diagram can help give you a “feel” for the problem. It 
may suggest ideas or plausible answers. You may even solve a 

problem graphically. 
. If there is an integer parameter, look for an inductive argument. 

44,48 Is there an “n’” or other parameter in the problem that takes on 
integer values? If you need to find a formula for f(1), you might try 
one of these. 

a. Calculate f(1), f(2),f(3), (4), f(5); list them in order, and see if 

there’s a pattern. If there is, you might verify it by induction. 
b. See what happens as you pass from n objects ton + 1. If you can 

tell how to pass from f(n) to f(1 + 1), you may build up f(n) inductively. 
. Consider arguing by contradiction or contrapositive. 

Contrapositive. Instead of proving the statement “If X is true, then Y 
is true,” you can prove the equivalent statement “‘If Y is false, then X 

must be false.”’ 
Contradiction: Assume, for the sake of argument, that the statement 

you would like to prove is false. Using this assumption, go on to prove 
either that one of the given conditions in the problem is false, that 
something you know to be true is false, or that what you wish to prove 
is true. If you can do any of these, you have proved what you want. 

Both of these techniques are especially useful when you find it 
difficult to begin a direct argument because you have little to work 
with. If negating a statement gives you something solid to manipulate, 
this may be the technique to use. 

. Consider a similar problem with fewer variables. 
If the problem has a large number of variables and is too confusing 

to deal with comfortably, construct and solve a similar problem with 
fewer variables. You may then be able to (a) adapt the method of 
solution to the more complex problem, or (b) take the result of the 

simpler problem and build up from there. 
. Try to establish subgoals. 

Can you obtain part of the answer, and perhaps go on from there? 
Can you decompose the problem so that a number of easier results can 
be combined to give the total result you want? 
  

Source: A. H. Schoenfeld, Mathematical problem solving (New York: Academic 

Press, 1985). 

number of variables,’” construct and solve a similar problem 
with fewer variables. In contrast, the other heuristics specify 
actions but no conditions. For example, heuristic 1 simply states 
to draw a diagram, and heuristic 5 to establish subgoals. Given 
that previous attempts at teaching heuristic strategies have been 
criticized for failing to deal with issues of control, it may be that



The Theory in Review 233 

Table 8.2. The post-test used by Schoenfeld to measure transfer of 
the five heuristics. Each problem is solved using the 
heuristic of the same number in Table 8.1. 
  

1. For what values of a does the system of equations 
7v-—y=0, (x +a’rty=1 

have (a) no solutions? 

(b) 1 solution? 

(c) 2 solutions? 
(d) 3 solutions? 

(e) 4 solutions? 

2. Let S be a set which contains n elements. How many different 
subsets of S are there, including the null set? 

3. Let A and B be two given whole numbers. The greatest common 
divisor of A and B is defined to be the largest whole number C that is 
a factor of both A and B. For example, the GCD of 12 and 39 is 3, 
and the GCD of 30 and 42 is 6. Prove that the greatest common 
divisor of A and B is unique. 

4.Suppose p, q, r, and s are positive real numbers. Prove the 
inequality 

2 2 2 (p* + IG + UF + 1s? + 1) 16. 
pars 

5. Prove that the product of any three consecutive whole numbers is 
divisible by 6. 

  

  

Source: A. H. Schoenfeld, Mathematical problem solving (New York: 
Academic Press, 1985). 

heuristics 2 and 4 are superior to the rest because they contain 
information that provides some basis for their selection. 

One could argue that the conditions for transfer were ideal in 
Schoenfeld’s experiment. Thorny problems of control (that is, 
heuristic selection and evaluation) which have plagued other 
training efforts were mitigated by having a relatively small num- 
ber of heuristics from which to choose. Also, Schoenfeld in- 
cluded no foils in the post-test. In other words, there were no 

problems that could not be solved by one of the heuristic strat- 
egies, and this further simplified control decisions. Addition- 
ally, the experimental procedure encouraged the use of the 
heuristics. During the post-test, experimental subjects were 
prompted every five minutes to examine a sheet containing the 
five heuristics and consider their use. This encouraged subjects 
to consider different options and once again mitigated problems 
of control.



234 The Transfer of Cognitive Skill 

In summary, Schoenfeld’s experiment represents a modestly 
successful attempt at teaching moderately general yet domain- 
specific heuristics under more or less ideal experimental condi- 
tions. Considering the prior lack of success in this area, 
however, Schoenfeld’s work is a substantial achievement and in 

a sense represents a beachhead from which further attempts at 
heuristic training can be launched. 

Teaching deductive and statistical reasoning 

A controversial issue in modern cognitive psychology is whether 
people either naturally use or can be taught to use formal, 
abstract rules to solve everyday problems in deductive logic and 
statistics. Of course, the early logicians subscribed to the doc- 
trine of formal discipline and believed that abstract, formal rules 
of deductive logic provided the basis for human reasoning in all 
domains. However, much recent research, exemplified by 
Wason and Johnson-Laird (1972) in logic and Tversky and Kahne- 
mann (1974) in statistics, has shown that people are generally 
quite poor at applying general logical and statistical principles. 
What is more, people seem particularly resistent to formal in- 
struction in these domains. 

The classic demonstration of fallacious reasoning in deductive 
logic is the card selection task of Wason (1966). Subjects are 
shown four cards that have letters on one side and numbers on 
the other. Subjects are asked to evaluate the correctness of rules 
that describe the cards, such as “If a card has a vowel on one 

side, then it has an even number on the other.” On a particular 

trial, subjects might be shown cards that have the symbols A, E, 
4, and 7 printed on them. Subjects are asked which cards they 
would need to turn over in order to either confirm or reject the 
rule, which in this case would be cards A and 7. The operative 
rule of logic in this task is the conditional, which states “‘if p, 
then q’’ (modus ponens) and equivalently, “‘if not g, then not p”’ 
(modus tollens). Subjects must turn over card A to evaluate the 
former case of the rule (if there is a vowel on one side, then there 
is an even number on the other) and card 7 to evaluate the latter 

(if there is not an even number on one side, then there is not a 
vowel on the other). Typically, subjects choose the A card, but 
turn over the 4 rather than the 7, mistakenly thinking that the 
rule implies a vowel on the other side of the 4. This fallacy is 
known as affirming the consequent. It has been shown in a wide 
variety of situations that people perform quite poorly in these 
formal situations involving arbitrary relations and little semantic



The Theory in Review 235 

content. For example, the solution rate on Wason’s selection 
task is typically between 10 percent and 20 percent. Even more 
discouraging is the fact that formal instruction in deductive logic 
has little impact on performance. In a study by Cheng, Holyoak, 
Nisbett, and Oliver (1986), college students who had just taken 
a semester course in logic did only 3 percent better than those 
who had no formal logic training on the card selection task. 

Although people do quite poorly on the card selection task, 
research has shown that the probability of solution increases 
dramatically if the problems are presented in realistic, thematic 
contexts. For example, Johnson-Laird, Legrenzi, and Legrenzi 
(1972) studied performance on a problem that was formally 
equivalent to the card selection task but involved a rule relating 
sealed letters and postage. This rule, which was well known in 
Britain at the time of the study and at one time actually de- 
scribed British postal system practice, stated that “‘if a letter is 
sealed, then it has a 5-pence stamp on it.” In an experiment 
involving British subjects, performance on the “postal’’ version 
of the selection task was 81 percent correct, compared with 15 
percent on the standard version. Interestingly, subsequent stud- 
ies showed that people not familiar with the rule, such as Brit- 

ons raised after the rule was revoked or people from other 
countries, showed no improvement. This led some researchers 
(e.g. D’Andrade, 1982; Griggs and Cox, 1982) to propose that 
people relied on extremely specific domain knowledge involv- 
ing particular instances and counterexamples to solve such prob- 
lems. This represents a radical specificity position that denies 
the potential generality of knowledge encoded as production 
rules and is almost as extreme as the position originally ad- 
vanced by Thorndike. 

Recently, Nisbett, Holyoak, and their colleagues have under- 
taken research aimed at disconfirming the radical specificity 
position and salvaging some of the generality lost in the demise 
of the formal discipline view. Their claim is that, although peo- 
ple do not seem to use the completely general and abstract 
system of deductive logic championed by the logicians, they do 
use a family of rule systems that are still somewhat general and 
domain-independent. These rule systems, which are acquired 
naturally through the solution of recurrent everyday problems, 
are called pragmatic reasoning schemas. Examples of such prag- 
matic schemas include the ‘‘causal’” schema (Kelley, 1973), 
which provides an abstract framework for reasoning about nec- 
essary and sufficient conditions, and the “‘contractual” or “per- 

mission” schema, which provides rules for checking whether



236 The Transfer of Cognitive Skill 

contracts or other social obligations have been violated. In the 
latter case, these checking procedures can be put into perfect 
correspondence with the logic of the conditional, which under- 
lies performance on Wason’s selection task. The basic “‘logic’”’ of 
the permission schema, which people come to understand 
through everyday experience, is that one may not do action p 
unless first securing permission q. In order to check whether a 
permission such as this has been violated, one would first check 
cases where the action was taken to make sure the permission 
was granted, and then cases where the permission was not 
granted to make sure that the action was not taken. This corre- 

sponds perfectly to the forms of modus ponens and modus tollens. 
Cheng and Holyoak (1985) have shown that, if Wason’s card 

selection task is represented in such a way that it makes contact 
with the permission schema, performance is greatly enhanced. 
In one experiment, one group of subjects was asked to evaluate 
the following senseless rule against a set of instances: “If the 
form says ‘entering’ on one side, then the other side includes 
cholera among the list of diseases.” Another group was given 

the same rule but also the rationale behind it which made ex- 
plicit contact with the idea of permission. The rationale was 
that, in order to satisfy immigration officials upon entering a 
particular country, one must have been vaccinated for cholera. 
The performance of the group given the rationale was signifi- 
cantly better than that of the group given just the senseless rule. 

Perhaps the most striking demonstration of the power of the 
permission schema was another experiment by Cheng and 
Holyoak (1985) where the problem was cast in terms of the 
schema but at the highest possible level of abstraction: “If one is 
to take action A, then one must first satisfy precondition P.” 

Subjects performed three times better on this task than on the 

standard card task (60 percent vs. 20 percent). This is a clear 

demonstration that subjects are not using specific information 
about the situation to make their judgments but really are being 

guided by the abstract concept of permission. 
Follow-up studies by Cheng, Holyoak, Nisbett, and Oliver 

(1986) showed that, whereas abstract training in the logic of the 

conditional by itself did not improve performance on the card 

selection task, abstract training in the permission schema did. 

Furthermore, abstract schema training was helpful on both ar- 

bitrary (that is, those not placed in a real-world context) and 

meaningful (that is, those more naturally thought of in terms of 

permissions and obligations) problems. One explanation offered 

for the observed facilitation was that, rather than learning any-



The Theory in Review 237 

thing substantive about the permission schema itself, subjects 
were learning more general rules for encoding situations in 
terms of the permission schema. 

This encoding explanation is consistent with recent findings 
in the realm of statistical reasoning which suggest that the fail- 
ure to apply certain statistical principles (such as the law of large 
numbers) is due in part to a failure to encode ambiguous situ- 
ations in a way that allows for application of the principle. A 
study by Kunda and Nisbett (1986) found that subjects were 
much more likely to apply the law of large numbers and simple 
versions of the regression principle to situations that could be 
objectively coded (such as academic or athletic performance) 
than more ambiguous and subjective social situations (such as 
another person’s friendliness toward new acquaintances). This 
is consistent with what Ross (1977) termed the “fundamental 
attribution error,” which is the tendency of people to overesti- 
mate the role of dispositional at the expense of situational fac- 
tors in social interactions. Presumably, if people could be 
prompted to code social situations more objectively, they would 
be more inclined to see elements of chance at work and subse- 
quently more likely to apply statistical principles. 

The importance of encoding was further demonstrated in a 
study by Fong, Krantz, and Nisbett (1986). In this experiment, 
subjects with widely varying levels of statistical training were 
told a story about a person who had had an outstanding meal at 
a restaurant on the first visit but on subsequent visits had been 
disappointed. Subjects were asked to generate possible expla- 
nations for the inconsistent quality of the food, and these ex- 
planations were rated by the experimenters for their statistical 
content. For example, an explanation with high statistical con- 
tent might be that only the very best restaurants turn out excel- | 
lent meals consistently for every customer and that the first meal 
received by the character in the story was probably a fluke. 
Alternatively, a nonstatistical explanation might be that the res- 
taurant had changed chefs between the first and subsequent 
meals. In addition to measuring the likelihood of statistical ex- 
planation at the various skill levels (subjects ranged from un- 
dergraduates with minimal statistical training to statistically 
sophisticated Ph.D.-level scientists), the experimenters intro- 

duced an experimental manipulation in the form of a “ran- 
domness cue’”’ which they predicted would encourage subjects 
to adopt a statistical point of view. Specifically, half of the sub- 
jects read stories where the unhappy diner selected his meals by 
randomly dropping his pencil on the menu. It was found that,



238 The Transfer of Cognitive Skill 

at least for those subjects with low and middling levels of train- 
ing, the presence of the cue led to a greater percentage of sta- 
tistical explanations. This reinforces the basic point that, in many 
problem-solving situations, novices may have the necessary 
rules but fail to encode situations in a way that makes contact 
with those rules. In these situations, training in encoding may 
have a much greater impact on performance than further train- 
ing on the rules themselves. 

To summarize, moderately general methods have been dis- 
covered and successfully taught in the areas of mathematical 
problem-solving, deductive logic, and statistical reasoning. 
Transfer across problems in these domains takes place through 
identical elements, but at a much higher level of abstraction than 
Thorndike proposed. Within a domain, certain ideas may have 
broader application than others, and it may be possible to pack- 
age these ideas and present them to students. Pedagogical suc- 
cess is largely dependent on the ingenuity and patience of the 
teacher. However, there are limits to generality, as there are 
certain costs associated with representing disparate phenomena 
similarly so that a particular generalized procedure will apply. 
Specifically, a general procedure may involve more rules and 
take longer to learn than a specific procedure (see Katona, 1940). 

Teaching general methods in computer programming 

The identical productions theory of transfer is quite capable of 
explaining transfer at an abstract level. Unfortunately, in many 
transfer studies there is no attempt either before or after the 
collection of data to simulate with production rules or any other 
computational formalism the abstract reasoning required of sub- 
jects. Many attempts at teaching abstract reasoning would ben- 
efit from a preliminary task analysis to determine whether the 
methods being taught can in fact be formalized. The exercise of 
writing a computer simulation would most probably reveal a 
great deal of complexity that had been overlooked. Addition- 
ally, once completed, these task analyses can be used as a guide 
to instruction. 

The research of Klahr and Carver (1988) on the acquisition and 

transfer of LOGO programming skills in children has amply 
demonstrated the utility of this approach. Like Schoenfeld, 
Klahr and Carver set out to demonstrate transfer in a domain 
that was strewn with negative results. Although some have held 
out great hope that computer programming would emerge as 
the mental discipline that would revolutionize children’s think-



The Theory in Review 239 

ing, most empirical studies have shown little benefit of learning 
to program on general problem-solving skills (Gorman and 
Bourne, 1983; Pea, 1983; Dalbey and Linn, 1984; Garlick, 1984; 
McGilly, Poulin-DuBois, and Shultz, 1984). Undaunted by these 
results, Klahr and Carver set as their goal to teach high-level 
debugging skills to elementary-school children and measure 
transfer of those skills to nonprogramming contexts. The lever- 
age they brought to the task was an in-depth task analysis and 
production system model of debugging which they used to 
guide instruction. Most important to their model and subse- 
quent instruction was a reification of the high-level goal struc- 
ture of debugging, which included the four subgoals of 
describing the discrepancy between the actual and desired pro- 
gram output, representing the structure of the program as a 
necessary preliminary step for locating the bug, finding the bug 
using the information gathered in steps 1 and 2, and correcting 
the bug by writing new code. They found, first, that instruction 
based on the simulation model improved children’s debugging 
skills over the span of a two-semester course and, second, that 
the children were able to transfer their debugging skills to non- 
programming contexts. The transfer tests involved the debug- 
ging of sets of written instructions for such tasks as arranging 
furniture, ordering food, or running errands. Transfer was fa- 
cilitated by the fact that the directions for these tasks were given 
a procedure-subprocedure structure similar to the LOGO pro- 
grams children had learned to debug. Specifically, children who 
had received training in LOGO debugging were much more 
likely to do a selective search of the directions and localize the 
bug to a particular subprocedure than a control group. These 
positive results suggest that simulation models may contribute 
much to the teaching of high-level thinking skills by providing a 
precise definition of exactly what is being taught. This philoso- 
phy lies behind much of our work on intelligent tutoring sys- 
tems, such as the LISP tutor. 

Limited Effects of Negative Transfer 

The identical productions theory claims that negative transfer 
should be quite limited in scope in transfer environments that 
are highly reactive and instructive. In our second text-editing 
experiment, we found little evidence of negative transfer be- 
tween a pair of screen editors designed for maximal interfer- 
ence. However, there has been a dearth of research on 

interference between complex cognitive skills, and we must re-



240 The Transfer of Cognitive Skill 

gard our conclusions as tentative. Fortunately, a study by Pol- 

son, Muncher, and Kieras (in preparation) provides further 

support for our position. 
The Polson et al. study is very similar to our own in that the 

domain of study was text editing. Subjects spent three days 
learning one of four screen editors and then all transferred for 

two days to a common editor. Subjects learned methods for 

performing fifteen kinds of edits defined by crossing the editing 
operations delete, copy, and transpose by the editing objects 
character, word, phrase, line, and sentence. There were four 
groups of approximately 25 subjects. One of these groups spent 
all five days learning the common editor and acted as a control 
group. 

The four editors used in the experiment shared identical meth- 
ods for positioning the cursor (LL) and had common high-level 
control structures, so there was an ample basis for positive 

transfer. However, the methods for performing the edits (MT) 

differed in ways that, at least according to the classical literature 
on verbal learning, would tend to promote interference. Two of 

the editors were called single-character editors (one was called 
SK1 and the other SK2), because each of the fifteen edits was 
associated with a single control character. These two editors 
differed from one another in that the same keys were used but 
rebound to different commands (thus, the relationship between 
them was equivalent to the relationship between the two editors 
used in our second text-editing study). In these single-character 
editors, subjects first positioned the cursor at the beginning of 
the range of the edit and simply pressed the appropriate control 
key to perform the edit. The bindings for the fifteen commands 
were equally nonmnemonic in both editors. One of the single- 
character editors, SK1, was designated as the common editor 
which served as the transfer condition for all groups. One of the 
experimental groups transferred from SK2 to SK1. 

The two remaining experimental groups transferred from the 
other two training editors to SK1. One of these training editors, 
called the cross-product editor (CP), had fifteen two-character 
commands that were generated by combining the first letter of 

the editing operation (d, c, or t) with the first letter of the editing 

object (c, w, p, 1, or s). Thus, to delete a phrase, one would type 
dp. The fourth and final training editor, called the block mode 
editor (BM), had three generic commands: delete, copy, and 
transpose, which were bound to labeled function keys. After 

selecting a particular editing operation, subjects were required 
to specify the range of the edit by highlighting a range of text



The Theory in Review 241 

with either the cursor keys or a single-character find function. 

Once both the operation and range were defined, the edit was 
terminated by pressing the enter key. 

Subjects spent the first and fourth days of the experiment 
going through a structured training program which consisted of 
three phases: reading an instruction booklet, practicing a 
blocked set of exercises for each of the three command opera- 
tions until reaching a criterion of ten correct edits, and then 
editing a short manuscript containing a mixed selection of thirty 
edits. In the last two phases, immediate feedback was given on 
each edit by a simple CAI program, and subjects were required 
to redo incorrect edits. On the second, third, and fifth days of 
the experiment, subjects had extended practice on their assigned 
editor on larger manuscripts. Again, immediate feedback was 
given and mistakes were corrected. 

Given the results of our text-editing experiment, it should 
come as no surprise that massive positive transfer was observed 
between all training editors and the transfer editor in this ex- 
periment on both day 4 and day 5. Positive transfer was ob- 
served in terms of both time to reach criterion on day 4 and total 
editing time on day 5. There was no evidence of negative trans- 
fer or interference of any kind. 

The value of this experiment is that it provides an interesting 
comparison between the amount of transfer between “‘rebound” 
editors (which is the replication of our experiment) and the 
amount between editors that likewise share many common el- 
ements but intuitively have a less interfering relationship. This 
provides a sensitive test for the presence of interference of any 
kind. For example, the cross-product training editor and the 
single-character transfer editor (called SK1) share nearly as many 
elements as the two single-character editors (SK1 and SK2), yet 

one would intuitively expect there to be little or no interference 
between the cross-product editor (CP) and SK1, since the com- 
mand structures are rather dissimilar. Since these two transfer 
conditions are based on nearly the same number of common. 

elements, one would expect the level of transfer to be about the 
same in both, if only common elements were in play and there 
were no interference effects. However, if transfer between SK2 
and SK1 was substantially less than that between CP and SK1 
(though still positive), this would be strong evidence that some 
kind of interference was reducing the level of positive transfer 
between SK2 and SK1. 

Figure 8.1 presents the mean time to reach criterion during 
the training phases on both day 1 and day 4. The data from day



242 The Transfer of Cognitive Skill 

    

Oo SK1-SK!1 

@ SK2-SK! 

4 CP-SK!1 

oO BM-SK! 

‘ce 80 ®@ CTRL-SK1 

E = 

@ 

E 

2 60F 

< 
o 

Cc 

® 
Ss 40F 

20 ! 
| 4 

Day 

Figure 8.1. Transfer results from the Polson, Muncher, and Kieras text-editing exper- 
iment. Reprinted by permission of the authors. 

1 are not important here; more interesting are the transfer re- 
sults from day 4. The SK2-SK1 condition exhibits nearly total 
positive transfer and, surprisingly, even more than that shown 
by CP-SK1. Statistical analysis confirmed that the performance 
of SK2-SK1 was superior to that of CP-SK1 on day 4; interest- 
ingly, the SK2-SK1 condition was not found significantly differ- 
ent from the SK1-SK1 control. Thus, it appears that the SK2-SK1 
group is exhibiting full positive transfer and is able to show the 
positive effects of all of its common elements. There is no evi- 
dence for interference of any kind. 

A repair analysis 

In the interpretation of these results, Polson et al. rightly point 
out that their experimental training procedure greatly eased the 
transition between editors, and that in such a situation the ef- 
fects of interference are likely to be minimized. Subjects were 
told explicitly about the structure of the transfer editor, and 
practice was accompanied by immediate feedback. To explain 
the beneficial effects of explicit instruction and feedback, they 
propose that transfer between overlapping complex skills is



The Theory in Review 243 

largely a repair process where the representation of a training 
skill is “edited” in order to reflect the new demands of the 
transfer task. This repair process is composed of three steps: 
determining which elements of the old skill need to be repaired, 
namely which elements are no longer valid in the transfer task; 
determining what the new, replacement elements should be; 
and making the repair. Polson et al. point out that, in transfer 
environments that offer both instruction and feedback, the first 
two steps in the repair process are greatly simplified. However, 
in situations where the transition between tasks is poorly de- 
fined and must be discerned by the subjects themselves, the 
effects of interference may be much stronger. Indeed, the classic 
Einstellung phenomenon (Luchins, 1942) can be described as a 

transfer situation where the changing demands of the transfer 
task have not been pointed out explicitly to subjects. 

A dramatic demonstration of this effect in a somewhat differ- 
ent setting is the classic part-whole negative transfer effect in 
verbal learning (Tulving, 1966; Tulving and Osler, 1967; Stern- 
berg and Bower, 1974). The basic phenomenon is that subjects 
exhibit negative transfer in the learning of a second list of words 
after learning an initial list that is either a subset (part-whole 
transfer) or superset (whole-part transfer) of the transfer list. 
However, if subjects are explicitly informed that the transfer list 
either contains or is a part of the training list, the negative 
transfer turns to strong positive transfer, which is what one 
would have originally expected given an identical elements the- 
ory. Anderson and Bower (1973) offered an explanation of these 
results which claimed that, without an explicit mention of the 
relationship between the lists, subjects were having trouble de- 
termining which items went with which list. In present termi- 
nology, subjects were having trouble with the first step of the 
repair process, namely identifying which elements needed to be 
changed. Apparently, subjects were entertaining the possibility 
that something more complex than a part-whole or whole-part 
relationship held between the two lists. Once subjects are in- 
formed of the relationship, they can quickly incorporate the 
representation of the first list into the representation of the 
second. 

Karat, Boyes, Weisgerber, and Schafer (1986) report prelimi- 
nary results from yet another text-editing experiment which 
supports this notion that, as repairs become more difficult to 
characterize, the likelihood of negative transfer increases. They 
took subjects who were already skilled users of a word- 
processing system and transferred them to a new version of the



244 The Transfer of Cognitive Skill 

system that differed somewhat in low-level editing functions. 

The critical difference between their experimental procedure and 

that of Polson et al. is that they provided no explicit instruction 

or feedback to ease the transition between systems, but simply 

handed subjects a set of reference manuals and asked them to 
go to work. This may be somewhat more representative of what 

happens in the standard office environment. Although the re- 

sults were somewhat preliminary and the appropriate controls 

were missing, the experiment did seem to suggest that subjects 
were showing less transfer than would be expected given a 
formal analysis of similarity between the editors. 

While the repair analysis can be used to accommodate these 

results, it is not clear that it is necessary. Our analysis handled 

results similar to those of Polson, Muncher, and Kieras without 

assuming such a process. Indeed, it is contrary to the ACT" 

theory to suppose that subjects have conscious access to pro- 

ductions in order to execute repairs. Also, we do not think that 

evidence of poor transfer in uninformed conditions requires 

such an explanation. If subjects cannot characterize what a new 
text editor requires, it is of little surprise that knowledge does 

not transfer. For example, if they do not know they are sup- 

posed to move a cursor to the position of an edit, they will not 

set the goal to do so, and productions relevant to that goal will 

not apply. The problem seems to be simply knowing what 
knowledge is applicable, not repairing that knowledge. 

Use Specificity of Knowledge 

Finally, recent research has a bearing on the issue of use spec- 
ificity of knowledge. Much work in the areas of naive mental 

models (Clement, 1983; McCloskey, 1983) and situated reason- 

ing (Lave, Murtaugh, and de La Rocha, 1984; Scribner, 1984) has 

shown that the use specificity of knowledge is not the exception 

but rather the rule in many content domains. For example, 

McCloskey (1983) has shown that trained physics students re- 

gress to “phenomenological” explanations when asked to inter- 

pret physical events outside of the classroom context. Most of 

these mistaken explanations conform to what McCloskey calls 

the naive “impetus” theory of motion, which conforms to a 

pre-Newtonian view of physics popular during the fourteenth 

through the sixteenth centuries. The impetus theory states that 
a proximal force is required to move an object, and without a 
proximal force an object will quickly stop, or at least stop mov- 

ing in the direction of the force. Figure 8.2 shows some exam-



The Theory in Review 245 

      
(a) rolling off a table top 

(b) shot out of acircular tube 

Figure 8.2. Erroneous predictions of ball trajectories from the experiments on naive 
theories of motion. The diagrams on the left show the correct Newtonian motion. M. 
McCloskey, Naive theories of motion, in D. Gentner and A. L. Stevens, eds., Mental 
models (Hillsdale, N.J.: Erlbaum Associates, 1983). 

ples of this misconception at work. In the task depicted in Figure 
8.2(a), subjects are asked to predict the trajectory of a ball rolling 
off a cliff, assuming no friction or air resistance. Instead of pre- 
dicting the correct curvilinear path shown in the first panel, 
subjects often predict a path that is initially completely horizon- 
tal, followed by a short curvilinear segment, followed by a seg- 
ment that is completely vertical, which is shown in the second 
panel. Clearly, formal knowledge of physics is not being applied 
in this task. Similarly, in Figure 8-2(b), subjects are asked to 
predict the trajectory of a ball as it shoots out one end of a 
circular tube. Instead of predicting the correct straight-line path 
tangent to the circle at the point of departure (shown in the first



246 The Transfer of Cognitive Skill 

panel), subjects often predict that the ball will continue for a 

while in its circular motion, but will eventually straighten out (as 

shown in the second panel). As shown in these two examples, 

subjects appear to have different sets of rules for reasoning 

about physics in the classroom and physics in the real world, 

and these rules make little contact with one another. McCloskey 

claims that the naive view actually dominates the formal view, 

to the extent that information presented in the classroom is 

often misinterpreted or distorted to fit the naive view. 

Similarly, work in situated reasoning has shown that certain 

people develop specialized, pragmatic mathematical procedures 

for reasoning about everyday situations that make little contact 

with formal mathematics instruction. Ethnographic studies 

(Lave, Murtaugh, and de La Rocha, 1984; Scribner 1984) have 

shown that educated adults may show a particular competence 

at performing mathematics in everyday situations such as shop- 

ping, managing money, and loading dairy trucks, but are inca- 

pable of performing the same tasks stated in the form of abstract 

mathematical problems in the laboratory. 
Most interesting is a study by Carraher, Carraher, and Schlie- 

mann (1985), which investigated the mathematical strategies 

used by Brazilian school children who also worked as street 

vendors. They found that, on the job, these children used quite 

sophisticated strategies for calculating the total cost of orders 

involving different numbers of different objects (such as the total 

cost of four coconuts and twelve lemons) and, what is more, 

could perform such calculations reliably in their heads. Carraher 

et al, actually went to the trouble of going to the streets and 

posing as customers for these children, making various pur- 

chases and recording the percentage of correct calculations. The 

experimenters then asked the children to come with them to the 

laboratory, where they were given written mathematics tests 

that involved the same numbers and mathematical operations 

that had been handled successfully in the streets. For example, 

if a child had correctly calculated the total cost of five lemons at 

35 cruzeiros each on the street, the child was given the written 

problem: 5 x 35 = ? 
The results showed that, whereas children solved 98 percent 

of the problems presented in the situated context, they solved 

only 37 percent of the problems presented in the laboratory 

context. Once again, these problems involved the exact same 

numbers and mathematical operations. Interestingly, if the 

problems were stated in the form of word problems in the 

laboratory, performance improved to 74 percent. This runs



The Theory in Review 247 

counter to the usual finding, which is that word problems are 
more difficult than equivalent number problems (Carpenter and 
Moser, 1982). Apparently, the additional context provided by 
the word problem allowed students to make contact with their 
pragmatic strategies. Protocol analyses of the children’s solution 
processes revealed that, whereas in the laboratory children were 
using formal mathematical algorithms, in the streets they were 
using an informal grouping strategy which took advantage of 
commonly recurring sums and products. For example, if the 
task was to compute the cost of four coconuts, and the cost of 
three coconuts was well known, the child would restate the 
problem as an addition of the cost of three and the cost of one. 

Conclusion 

Recent research thus provides a rather contented perspective on 
the identical productions theory and the ACT* theory on which 
it is based. It offers a great deal of support for the theory and 
gives it very little difficulty. However, this optimistic assessment 
ignores some deep representational problems associated with 
application of the identical productions theory. The focus of the 
last chapter is to expose these problems in some detail.



9 / Representation and Transfer 

he essence of this book is that Thorndike’s identical ele- 

ments theory is alive and well in a new body. We have 

resurrected Thorndike’s theory by redefining his identical ele- 

ments as the units of declarative and procedural knowledge in 

the ACT* theory. In short, we propose that initial transfer can be 

explained in terms of overlap in the declarative component and 

sustained transfer in terms of overlap in the procedural compo- 

nent. The key difference between his proposal and ours is that, 

whereas Thorndike’s elements referred only to external be- 

haviors, ours include purely cognitive operations that refer- 

ence abstract mental objects. In the process of resurrecting 

Thorndike, we have given support to the ACT* theory of knowl- 

edge representation. 
There is a serious problem, however, lurking in this otherwise 

rosy picture. The problem is that all of our transfer predictions 

turn critically on assumptions about the representation of the 

skill. We are in danger of having a vacuous theory because we 

may be able to accommodate any potentially embarrassing re- 

sult by suitable assumptions about knowledge representation. 

This was not a problem for Thorndike because he did not pro- 

pose a mental representation. 
A series of experiments by Elio (1986) illustrate how poten- 

tially conflicting transfer results can be resolved by making ap- 

propriate assumptions about representation. She had subjects 

learn procedures that involved calculating a hypothetical pollu- 

tion rating for a sample of water. Table 9.1 shows the four 

procedures, which consisted of three component steps (where



Table 9.1. 

Representation and Transfer 249 

Examples of procedures from the four conditions of the 
Elio experiment. The component steps are particulate 
rating, mineral rating, and marine hazard. The integrative 

steps are index 1, index 2, and overall quality. 
  

Quantity calculated Formula 
  

Initially learned procedure 

N
O
 

fF 
W
N
 

. Particulate rating 

. Mineral rating 

. Index 1 

. Marine hazard 

. Index 2 

. Overall quality 

Old component, 
new integrative condition 

O
O
 

ke 
W
 

NN
 
=
 . Particulate rating 

. Mineral rating 
. Marine hazard 

. Index 1 

. Index 2 

. Overall quality 

Old integrative, 

new component condition 

1. 

2. 

oO 
1 

—& 
W
 

Particulate rating 

Mineral rating 

. Index 1 

. Marine hazard 

. Index 2 

. Overall quality 

Both new condition 

NO
 

N
O
 

-
 
W
 

. Particulate rating 

. Mineral rating 

. Marine hazard 

. Index 1 

. Index 2 

. Overall quality 

Solid x (lime, —lime,) 

Greater of (algae/2) and (solid/3) 

Particulate + mineral 

(Toxin,,a, + toxin,;,)/2 

Index 1/marine 

Index 2 — mineral 

(Toxin,,ax + toxin, ;,)/2 

Solid x (lime, —lime,) 

Greater of (algae/2) and (solid/3) 

Mineral/marine 

Particulate x index 1 

Index 2 + index 1 

(Lime,,in X 3) + algae 

Lesser of (solid + lime,) and 
(algae + toxin) 

Particulate + mineral 

Solid/lime, 

Index 1/marine 

Index 2 — mineral 

(Lime,in X 3) + algae 

Lesser of (solid + lime,) and 
(algae + toxin,) 

Solid/lime, 

Mineral/marine 

Particulate x index 1 

Index 2 + index 1 
  

Source: R. Elio, Representation of similar well-learned cognitive procedures, 
Cognitive Science, 10, 41-74 (1986).



250 The Transfer of Cognitive Skill 

raw data presented to subjects were used to calculate interme- 

diate quantities) and three integrative steps (where the interme- 

diate quantities were combined into an overall score). Subjects 
had to commit these procedures to memory and perform the 
calculations at a computer terminal, as shown in Figure 9.1. 

Elio reported a series of five experiments, but for our pur- 
poses, transfer results from only two are relevant. In both of 
these experiments, subjects learned a couple of pollution proce- 

dures and then transferred to one of four new procedures that 

involved either: (1) old component steps and new integrative 
steps, (2) old integrative steps and new component steps, (3) all 
old steps, or (4) all new steps. The critical difference between the 
two experiments was that in one experiment, when component 

steps were familiar in the transfer task (case 1 above), they 

appeared in the same serial positions as in training, and in the 
other experiment they appeared in different serial positions. 

Before these experiments were run, there was no reason to 

expect that serial position would have any effect on accessing 
and executing familiar steps. Indeed, one property of produc- 
tion rules that we have proposed is that they fire independently 

of context. However, Elio observed that transfer was nearly total 

when the steps appeared in the same serial positions, but much 
less when the serial positions were scrambled. To explain these 
results, she proposed that the rules for the component steps test 
for the serial position of the step on the left-hand side. 

Thus, Elio was able to accommodate potentially conflicting 

results by suitable assumptions about knowledge representa- 

  ‘ 
  

  

      

   

  

: LIME TOXIN 

SOLID ALGAE 5 
6 2 

4 

8 

7 
2 o

m
 

ai 

      

      
  

  

Figure 9.1. Screen configuration in the pollution index experiments (subjects are given 
this raw data to make a series of calculations). R. Elio, Representation of similar well- 

learned cognitive procedures, Cognitive Science, 10 (1986), 41-74.



Representation and Transfer 251 

tion. Her goal was not to salvage the identical elements model, 
as far as we can tell. Nonetheless, her work illustrates how 
certain representational assumptions can blunt the disconfirma- 
tion of the identical elements model. 

As we face up to the problem of representation and its impli- 
cations for theories of transfer, our discussion is dominated by 
two issues. First, to what degree can tests be made of our 
identical elements model that do not depend on detailed as- 
sumptions about representation? Second, what can we do to 
constrain a representation on independent grounds so that we 
can make real tests of the identical elements hypothesis? 

Mathematical Analysis of Transfer 

What predictions can the identical elements model make about 
transfer without a strong commitment to a particular knowledge 
representation? Without any representational assumptions, no 
predictions are possible. To get started, it is helpful to assume 
minimally that the transfer task has the same organization be- 
fore and after a subject’s exposure to the training task. This is 
not always the case. Specifically, most instances of negative 
transfer are due to the fact that training on task A causes sub- 
jects to choose a nonoptimal procedure for task B. 

Overlooking this complication for the moment, suppose we 
can assume that learning task A does not affect the structure of 
task B or vice versa. In many situations this is a good first 
approximation. Then what can we predict? We can decompose 
the tasks into the elements that are shared and those that are 
unique. Let i index the components (such as productions) that 
occur in either task. Let A; give the frequency of component i in 
task A and B; its frequency in task B. For components unique to 
task A, B; = 0. For components unique to task B, A; = 0. A 
common component has both A; and B; greater than zero. This 
framework allows for the very real possibility that common 
elements may occur with very different frequencies in the two 
tasks. 
Now let us turn to calculation of our transfer formula: 

  

I-T 
(9.1) Te tearning = I-L x 100 

where J is some measure of initial performance, T is a measure 
of performance following training on a related task (the transfer 
condition), and L is a measure of performance following an



252 The Transfer of Cognitive Skill 

equal amount of training on the same task (the learning control 

condition). 

The initial performance I is typically some aggregate measure 

over a series of trials, as is T and L. For the sake of simplicity in 

our calculations, let us assume that I, T, and L are based on 

performance on the median (not the mean) trial of the aggre- 

gate. We define m as the index of the median trial that goes into 

calculating I, and n the index that goes into calculating T and L 

(for example, if I is based on performance on the first ten trials, 

m = 5.5). In the case of calculating T, we can break n into two 

parts; j, which is the total number of trials on the training task, 

and k, which is the median trial on the transfer task. In calcu- 

lating T,n =j + k. 
Now we are in a position to calculate the I, T, and L terms in 

the transfer equation. In our calculations, we sum over all com- 

ponents to determine total task time. [(A) denotes initial perfor- 

mance on task A, I(B) initial performance on task B, L(A) learning 

performance on task A, L(B) learning performance on task B, 

T(AB) transfer performance on task B having studied task A, 

and T(BA) transfer performance task on A having studied 

task B. 
Assuming power-law speedup, the total times are: 

(9.2) (A) = ) tA)“ 
icA 

(9.3) (B) = >) t(Bym)~“ 
ieB 

(9.4) L(A) = ¥) t(Ain)~“ 
1¢A 

(9.5) L(B) = ¥ t{Bn)~* 
ieB 

(9.6) T(AB) => t(Ag+ Bx) ~4 
ieB 

(9.7) T(BA) = 5 t{Bs+ AK)“ 
ieA 

Here t, is the time to execute the ith component on the first trial. 

Again, we are assuming that all of the components are speeding 

up as a power function of practice with exponent d. 

What we cannot do without representational assumptions is 

specify the ¢,, Aj, and B; in the preceding equations. We now 

want to explore what can be predicted without full specification



Representation and Transfer 253 

of these components. Two equations give the percentage sav- 
ings in going from A to B versus going from B to A: 

I(B) — T(AB) 

  

(9.8) To tearning (AB) ~ I(B) — L(B) 

> t(Bym)~*— > L(Aj+ Bk)“ _ ieB ie B 

>, t(Bym)-4— >) t(Bn)~4 ie B te 

(A) — T(BA) 

  

(9.9) Tec tearning (BA) ~ I(A) — L(A) 

s t(A,m)~4 — s t (Bj + A;k) 4 
_ieA 

ie A 

d, t¢Am)~4— D) tan) ie A 
ie A 

A reasonable experimental assumption is that we aggregate 
over the same number of trials in calculating both I and T. Thus, 
m = k. Then we can rewrite these equations: 

—D tBlm-4—-((A;/ B)j+m)~4] 
(9.10) Totearning (AB) = $408 

> tBlm~4-(j+m)~4 
ie B 

  

> tAlm-4—(B,/ Apjtm)~4 
(9.11) Tegtearning (BA) = £405 

> t,Afm~4—(j + m)~4] 
ie B 

  

Here the numerator now represents the intersection of elements 
in A and B (in equation (9.10) some of the A; might be zero, and 
in equation (9.11) some of the B; might be zero). With the equa- 
tions stated in this form, it is clear that transfer is always positive 
in that the numerators are always greater than 0. For example, in 
equation (9.10), since (A; / B,)j > 0, then ((A; / B)j + m)~4<m~4. 
It follows simply that the numerator is always greater 
than 0.



254 The Transfer of Cognitive Skill 

In addition, equations (9.10) and (9.11) reveal the remote pos- 

sibility of transfer greater than 1. Ty jearning(AB) can be greater 

than 1 if the ratios A; / B; are very large, indicating that the 

common components get much more practice on a trial in task A 

than in task B. This would happen only in perverse experimen- 

tal situations, for example, when training trials involve solving 

two problems and transfer trials only one. 

A reasonable simplifying assumption at this point is that the 

ratios A; / B; and B; / A; are close enough to 1 that we can get rid 

of them in equations (9.10) and (9.11). As a result, the complex 

terms involving m, j, and d can be brought outside the summa- 
tion signs and canceled, yielding the equations: 

t B; 1 

(9.12) T 4 tearning (AB) = a0" 

DB, 
ie B 

2 tA 
(9.13) TV &%tearning (BA) = isft- 

DHA; 
ie A 

Here we see a remarkable result. Our measure of transfer is 

independent of j, the number of initial learning trials, or m, 

which reflects the number of transfer trials (m = k). Interest- 

ingly, this prediction seemed true of the various experiments we 

analyzed. The equations also predict transfer less than or equal 

to 1, since A M B is a subset of A and also of B. 
A further simplification at this point would be to assume that 

all components (such as productions) take the same time to 

execute on the first trial; that is, t; is a constant. The f; terms in 

the preceding equations could then be canceled, yielding trans- 

fer formulas which involved simple summations of component 

frequencies. This in fact is the form we used to make our theo- 

retical predictions of transfer in text editing. 

As a final simplification, we might assume that, for the com- 

mon elements, A; = B;. In other words, the common elements 

co-occur with equal frequency in the two tasks. This leads to the 

prediction that absolute amount of transfer would be equal in 

both directions. This prediction tended not to be confirmed in 

our data.



Representation and Transfer 255 

To summarize, with increasingly strong assumptions, the fol- 
lowing predictions can be made concerning identical elements 
models of transfer: 

1. The transfer ratio will be greater than 0. 
2. The transfer ratio will be less than 1 and will be indepen- 

dent of the number of learning trials and transfer trials. 
3. The transfer ratio will depend solely on the number and 

frequency of shared components versus total components. 
4. Transfer in terms of absolute savings (not ratio savings) 

will be symmetric. 

The first three predictions seem to be confirmed in our data, 
but the last is not. Any stronger predictions about transfer will 
be based on more detailed assumptions about skill representa- 
tion. 

Determining Representations of Cognitive Skill 

The preceding mathematical analysis has shown that certain 
interesting qualitative properties of transfer can be determined 
in the absence of specific representational assumptions. How- 
ever, quantitative predictions of transfer can be made only in the 
context of explicit cognitive models, which necessarily embody 
a host of representational assumptions. This problem has trou- 
bled cognitive psychologists for years: how do we determine the 
representations used by subjects? There are numerous examples 
(such as the early work of the gestalters and the Elio experi- 
ments) where subtle differences in representation can some- 
times have a major impact on transfer outcomes. It follows that 
the accuracy of transfer predictions ultimately rests on the fi- 
delity of the cognitive models upon which they are based. In 
turn, the fidelity of the models depends upon the strength of the 
tools available for model building and the skill with which they 
are deployed. 

Model building in cognitive science is a complex task, and we 
can provide no effective algorithm for success. Given the current 
state of the art, we can only list some of the methods used, cite 
some of their problems, and present what we feel are examples 
worth emulating. We should first point out the obvious: every 
model is an approximation, and no model is perfect. A model of 
performance may account for more or less behavior and incor- 
porate more or less of the complexity of the task. One common 
simplification is to model only error-free performance (e.g. Card, 
Moran, and Newell, 1983). This is despite the fact that error



256 The Transfer of Cognitive Skill 

recovery may contribute to the performance of the skill and may 

serve as a basis for substantial transfer. Generally, one would 

expect that the more detailed and extensive the task analysis, 

the more accurate the prediction (but cf. Abruzzi, 1956). Never- 

theless, our text-editing results and the results of Kieras and 

Polson (1985) suggest that approximate production system mod- 

els may often do quite well at predicting transfer. Our calculus 

experiments, however, show that in some cases this production 

system approximation is inadequate and must be supplanted by 

a more detailed analysis which involves the consideration of 

declarative precursors in calculations of transfer. This adds a 

whole new dimension of complexity to the models. 

Although individual task analyses may be more or less de- 

tailed, the history of task analysis in psychology shows a general 

trend toward the assimilation of greater and greater levels of 

complexity. This is made possible by theoretical advances in the 

understanding of complex behavior. Complex task analysis be- 

gan with Thorndike, who reduced skilled performance to a set 

of stimulus-response bonds. This position was developed by 

Skinner (1957) and his colleagues, who applied task analysis 

techniques to the design of programmed instruction. This line of 

research culminated in Gagné’s work on complex skill hierar- 

chies (Gagné and Paradise, 1961). However, the task analyses of 

Thorndike, Skinner, and Gagné were purely behavioral and 

made no reference to cognitive constructs like goals, plans, and 

strategies. This omission was remedied with the advent of cog- 

nitive psychology in the late 1950s. Initially, researchers like 

Newell and Simon (1972) explored the role of goals and plans in 

knowledge-impoverished domains like logic and cryptarith- 

metic. As cognitive psychology matured, the emphasis shifted 

to the study of knowledge-intensive domains like physics prob- 

lem solving (Larkin, McDermott, Simon, and Simon, 1980), 

medical diagnosis (Shortliffe, 1976), and writing (Flower and 

Hayes, 1977). This period was marked by numerous detailed 

comparisons of problem solving in experts and novices and led 

to the enumeration of many differences in knowledge and strat- 

egy (Chi, Feltovich, and Glaser, 1981). Most recently, research- 

ers like Johnson-Laird (1983), Young (1983), and Kieras and 

Bovair (1984) have documented the role of complex mental mod- 

els in skilled behavior. Thus, cognitive psychology has wit- 

nessed a steady growth in the taxonomy of “elements” that 

comprise skilled performance. 

As cognitive theories become more sophisticated, so do task 

analyses, which are simply embodiments of those theories. Re-



Representation and Transfer 257 

alizing that theories of the future will undoubtedly capture more 
complexity and provide even more kinds of “identical elements” 
upon which to base calculations, we adopt a relativist outlook: 
current representations of cognitive skill, though admittedly 
deficient, are useful to the extent that they both make accurate 
transfer predictions and highlight mistakes or omissions and 
therefore suggest better representations. With this kind of dis- 
claimer, we hope to avoid arguments concerning the exact na- 
ture of the representations. Model building is necessarily an 
inductive prcoess, fraught with indeterminacy and approxima- 
tion. A proposed model is often just one of many equally good 
models satisfying a set of empirical constraints (Anderson, 
1976). In the absence of discriminating features, the well- 
traveled and oft-maligned principle of parsimony may be ap- 
plied to choose among competitors. Ultimately, however, it is 
predictive power that validates all modeling decisions. 

Dimensions of representation 

Representations may vary along a number of dimensions. Model 
building involves working in a three-dimensional space defined 
by the dimensions of organization, specificity, and grain size. 

Organization. The dimension of organization refers to the basic 
decomposition of the task, and it is revealed by a subject's goals 
and plans. Although the task itself may place severe constraints 
on skill decomposition, it is often the case that more than one 
organization is possible. Most notable are the “rote’’ and ““mean- 
ingful” organizations studied by the gestalters. Another inter- 
esting instance is the classic work of Simon (1975) on the 
functional equivalence of problem-solving strategies for solving 
the tower-of-Hanoi puzzle. Through a formal analysis, Simon 
identified four strategies for solving the puzzle that radically 
differed in terms of memory demands, concepts used, and per- 
ceptual tests performed. Surprisingly, all predicted the same 
move sequences and could only be discriminated (if at all) 
through protocol analysis. 

Not surprisingly, the basic organization of a skill has broad 
implications for transfer. Indeed, Wertheimer discriminated be- 
tween rote and meaningful organizations on the basis of a trans- 
fer test. Similarly, Simon (1975) pointed out that, whereas a 
complex, goal-recursive strategy for the tower-of-Hanoi puzzle 
will transfer to puzzles with any number of disks, a simpler 
perceptual strategy may not. 
Working within a production system formalism, movement



258 The Transfer of Cognitive Skill 

along the organization dimension is associated with the casting 
and recasting of productions that define goal structures. A rote 
strategy may be defined as the absence of a hierarchical goal 
structure, and as such, it represents an endpoint of sorts along 
the organization dimension. A rote strategy for any task can be 
modeled by a single goal and a set of operators which fire in 
some predetermined sequence in service of that goal. Control is 
supplied by working memory tests which make explicit refer- 
ence to previous steps in the procedure. For example, here are 
several rules which might appear in some rote procedure for 
baking a cake: 

IF the goal is to bake a cake 
and the batter has just been mixed 

THEN light the oven. 

IF the goal is to bake a cake 
and the oven has just been lit 

THEN grease the pan. 

IF the goal is to bake a cake 
and the pan has just been greased 

THEN dump the batter into the pan. 

Alternatively, the task of baking a cake could be organized by 
some hierarchical control structure. In this case, certain rules 
would exist which simply test for the current goal and set ap- 
propriate subgoals rather than operate directly on the environ- 
ment. Here is an example of one such rule, perhaps the first rule 
to fire in a meaningful cake-baking procedure: 

IF the goal is to bake a cake 
THEN set as subgoals to: 

1. read the recipe 
2. assemble the ingredients 
3. prepare the batter 
4. bake in the oven. 

Each of these four subgoals might be decomposed further into 
additional subgoals. Finally, when operators fire, they do so in 
the context of some hierarchical goal structure. It is interesting 
to note that the rote procedure is more efficient than the 
meaningful procedure in terms of number of rule firings; each 
rule that sets subgoals is additional overhead in terms of both 
learning and performance. A classic result from Katona (1940) 
is that rote procedures are in fact often easier to learn and 
perform than meaningful procedures. The advantage of mean-



Representation and Transfer 259 

ingful procedures is in their wider applicability and potential 
for transfer. 

Specificity. Given a particular organization, a representation 
may vary in terms of specificity (or conversely, in terms of 
generality). In production systems, specificity is often achieved 
by replacing variables in the tests with constants or by adding 
conditional clauses to individual rules. These processes were 
called proceduralization and discrimination, respectively, in Ander- 
son (1982) and were regarded as two of the primary learning 
mechanisms. As examples of variability along the dimension of 
specificity, here are some possible variants of a rule from our 
text-editing simulation: 

IF the goal is to specify a command symbol 
and the command is =command 
and the symbol for =command is =symbol 

THEN set as a subgoal to type =symbol. 

This rule retrieves the alphanumeric symbolic for a command 
and sets the goal to type that symbol. Given the variabilization, 
this rule is quite general and will work for any command in our 
text editors, assuming that the association between command 
and symbol is stored in working memory. However, one could 
replace the variables with constants and have a rule specialized 
to a particular command: 

IF the goal is to specify a command symbol 
and the command is replace line 
and the symbol for replace line is r 

THEN set as a subgoal to type r. 

This rule has eliminated the need for memory retrieval and 
variable instantiation but, asa consequence, has sacrificed much 
of its generality. In the language of Anderson (1982), this rule 
has been proceduralized. Issues of proceduralization arise fre- 
quently when building production system models of transfer. 
The issue is essentially whether to store task-specific knowledge 
declaratively in working memory and have that knowledge in- 
terpreted by general-purpose productions or to embed the 
knowledge directly in the productions themselves. If one is 
making predictions of transfer solely on the basis of production 
set overlap, it seems wise to use fully proceduralized rules, since 
otherwise the task-specific component of the skill will be grossly 
underestimated. In fact, we used proceduralized rules in our 
text-editing simulations. 

Aside from proceduralization, our text-editing rule can be



260 The Transfer of Cognitive Skill 

made even more specific by adding a discriminating contextual 

test on the left-hand side: 

IF the goal is to specify a command symbol 
and the command is replace line 
and the symbol for replace line is r 
and the editor is EDT 

THEN set as a subgoal to type r. 

This rule now only fires when the editor is EDT. In general, 

it is quite a thorny problem to decide how many contextual 

tests to include on the left-hand sides of rules. Perhaps a de- 

fensible position is to include enough context so that the rule 

fires correctly in the training task(s) but no more. So, for ex- 

ample, if training involved learning two editors, ED and EDT, 

and the replace command differed in the two editors, then the 

preceding contextual test would be required for the rule to fire 

properly. 

Although movement along the specificity dimension is asso- 

ciated largely with decisions concerning discrimination and pro- 

ceduralization, sometimes subtler situations arise which may 

require local reorganizations of small sets of rules. Specifically, 

certain abstractions involve the creation of entirely new rules 

rather than the modification of existing rules. For example, in 

our text-editing simulations, we were faced with the situation 

that in the line editors, all commands are terminated with car- 

riage return. Do we include this carriage return as part of each 

command, or do we write a separate rule to supply the carriage 

return? This has implications for transfer, because a rule that 

stood independently and supplied a terminating carriage return 

would transfer between the line editors. To illustrate this situ- 

ation further, we present two production rule representations 

for the print command in ED. First, we have a rule that includes 

carriage return as part of the method for printing lines: 

IF the goal is to execute a command 
and the command is print 
and the target line is =line 
and the editor is ED 

THEN set as subgoals to: 
1. type =line 

2. type p 
3. type carriage return. 

Next, here are two rules which simulate the same behavior. The 

difference is that a piece of goal structure has been added which



Representation and Transfer 261 

captures the regularity of carriage return as a terminator for all 

commands in ED: 

IF the goal is to enter a command 
THEN set as subgoals to: 

1. enter the command 
2. type carriage return. 

IF the goal is to enter a command 
and the command is print 
and the target line is =line 
and the editor is ED 

THEN set as subgoals to: 
1. type =line 
2. type p. 

We chose the latter representation for our simulation. This de- 
cision was based upon a small informal experiment conducted 
with several expert users of ED. First, we asked subjects to 
describe the various methods for printing, substituting, and 
appending text in ED. None made reference to carriage return in 
any of their descriptions. This suggests that carriage return is 
not stored as a part of each method. Second, we gave subjects 
hypothetical new commands, such as a command to change 
lines of text from upper to lower case. Although none of our 
descriptions made reference to carriage return, all subjects were 
able to supply the missing carriage return when using the com- 
mands. Thus, we have reason to believe that the carriage return 
is represented as an independent rule. 

In sum, we used a miniature transfer experiment to discrim- 
inate between possible representations of particular rules. Ulti- 
mately, many such microdecisions contributed to an overall 
model of the skill which was used to make a series of transfer 
predictions in another, totally independent context: transfer be- 
tween the line editors. Small pilot tests such as these can serve 
a useful bootstrapping function in many modeling situations. 

Grain Size. Finally, within a particular organization and level 
of specificity, representations may vary in terms of grain size. 
Grain size simply refers to the size of operators, that is, the 
number and scope of actions on the right-hand sides of produc- 
tions. Movement along the grain size dimension is accomplished 
through what in Anderson (1982) is called composition. Compo- 
sition takes two rules and combines them into one. For example, 

the first two rules of our rote cake-baking procedure could be 
combined into the rule:



262 The Transfer of Cognitive Skill 

IF the goal is to bake a cake 
and the batter has just been mixed 

THEN _ 1. light the oven 
2. grease the pan. 

This rule has two actions on the right-hand side rather than one. 
Composition does not change the performance of a model in 
terms of the sequence of actions taken. However, composition 
does have a large effect in terms of speed. Generally, the com- 
position process predicts an exponential speedup in terms of 
execution time on a single task, since the total number of rules 
is being cut by some constant proportion from trial to trial. 
However, Rosenbloom and Newell (1986) showed that the com- 
position process in fact predicts learning rates that more closely 
approximate a power function if one looks at performance across 
trials that involve slight variations of the same task, which is the 
case in most learning situations. This slower learning rate is due 
to the fact that only certain compositions apply from trial to trial. 
Many of the larger compositions are based on the idiosyncrasies 
of particular problems and are often useless on similar prob- 
lems. 

This learning effect nicely illustrates the effect of composition 
on transfer. Generally, as rules get larger, that is, have more 
tests and actions per rule, they become less applicable. For this 
reason, in our production system models of transfer, we have 
avoided composed rules. 

Factors influencing representation 

A number of factors influence the representation that subjects 
use. Newell and Simon (1972) pointed out that severe constraints 
are placed on representation by the task environment itself. This 
position is derived from the principle of limited rationality (Si- 
mon, 1947), which states that, within the processing limits set 

by the human information-processing system, individuals act 
more or less rationally to attain their goals. This means that, 
often when we examine expert behavior on routine tasks, we are 
learning more about the structure of the task than the psychol- 
ogy of the subject. The expert has adapted completely to the 
demands of the task and is doing precisely what is required. 
However, there may still be a certain amount of variance in the 
kinds of representations that subjects adopt. This variance can 
be attributed to three major sources: task instructions, previous 
experience on similar tasks, and practice.



Representation and Transfer 263 

Task Instructions. Although it is often thought that subjects 
arrive at their representations through some mysterious means, 
it is often the case that the task instructions provided by the 
experimenter go a long way toward defining the representation. 
Typically, instructions provide descriptions of objects to be ma- 
nipulated, operators for manipulating them, initial and goal 
states of the problem, and perhaps even some subgoal struc- 
ture. For example, in our text-editing experiments, we told sub- 
jects in our instructions that to perform an edit, they first had to 

locate the line containing the edit and then modify the text on 
that line. This rule, derived from the GOMS model of text ed- 

iting of Card et al. (1983), was encoded directly as a rule in the 
simulation. 

With the use of intelligent tutoring systems as data collection 
tools, the experimenter’s conceptualization of the problem space 
normally provided only in the task instructions is enforced to a 
much greater degree throughout the course of problem solving. 
The interface of the tutor completely determines the operators 
and the objects to be manipulated, as well as the form of exter- 
nal memory. For this reason, intelligent tutoring systems are 
very promising as test-beds for identical elements theories of 
transfer. They reduce variability in representation between sub- 
jects by enforcing the designer’s conceptualization of the prob- 
lem space. 

Hayes and Simon (1974) and Simon and Hayes (1976) per- 

formed a set of experiments comparing isomorphs of the tower 
of Hanoi which nicely illustrates the strong linkage between task 
instructions and representation. In conjunction with this empir- 
ical work, they developed a model of comprehension called 
UNDERSTAND whose purpose was to take the written problem 
instructions and develop a representation that could be used to 
solve the problem. Specifically, the model derived information 
about goals, problem states, and operators from the task instruc- 
tions and presented that information to a general-purpose 
problem-solving program called GPS. The UNDERSTAND 
model made explicit predictions concerning the kinds of repre- 
sentations subjects would adopt when given a particular set of 
problem instructions. 

Hayes and Simon studied two basic isomorphs of the tower of 
Hanoi. The first, called the move isomorph, involves the physical 

movement of disks from peg to peg. This is the standard con- 
figuration of the problem, where moves are constrained by two 
principles: if a peg has more than one disk, only the smallest 
disk can be moved; and a larger disk may not be placed on a peg



264 The Transfer of Cognitive Skill 

where there is already a smaller disk. The second isomorph, 
called the change isomorph, involves changing the sizes of disks 
on pegs of differing sizes. A single, stationary disk is associated 
with each peg, and the rules state that it is illegal to make a disk 
larger if there is already a disk of greater or equal size on a larger 
peg. These problems are actually equivalent in terms of the 
space of moves. The change representation differs from the 
move representation in that the referents for disks and pegs 
have simply been switched. A peg in the change representation 
represents a disk in the move representation, and changing 
sizes maps perfectly onto changing locations. In the change 
representation, each peg always has a single disk, since in the 
move representation, disks have only a single location. 

The UNDERSTAND model predicted that problem states and 
moves would be represented differently for these two iso- 
morphs and that the representation adopted would be deter- 
mined completely by the instructions provided. In the move 
problems, a move would be represented as removing a disk 
from one of the pegs and placing it on another peg. In the 
change problems, a move would be represented as changing the 
name of the peg with which some disk is associated. Thus, the 
same move is represented by a different rule, depending upon 
the isomorph from which it is drawn. 

Simon and Hayes (1976) gathered verbal protocols from sub- 
jects solving both kinds of problems to support their claim that 
the representations differed. They presented the isomorphs 
within the context of a particular cover story involving monsters 
and globes rather than pegs and disks. Table 9.2 shows the 
problem instructions for both isomorphs. Two kinds of state- 
ment were analyzed from the protocols: those concerning de- 
scriptions of moves and those concerning descriptions of 
problem states. In both cases, the analysis was quite straight- 
forward, and the evidence was overwhelming that subjects 
adopted the representation given by the experimenter. For 
example, this protocol excerpt reveals a move representation: 
“So the small globe goes over to the guy with the medium- 
sized globe”; whereas this excerpt reveals a change representa- 
tion: “The medium-sized monster changes his into a small 
globe.” 

Protocols were scored by two coders who agreed in all cases 
on the representation adopted. Furthermore, in all cases but 
one, the representation was consistent with the problem in- 

structions. This leads to two important conclusions: task instruc- 
tions strongly influence the representation a subject adopts, and



Representation and Transfer 265 

Table 9.2. Isomorphic versions of the tower-of-Hanoi monster 

problems. 
  

(a) Move isomorph 

Three five-handed extraterrestrial monsters were holding three 
crystal globes. Because of the quantum-mechanical peculiarities of 
their neighborhood, both monsters and globes come in exactly three 

sizes with no others permitted: small, medium, and large. The 

medium-sized monster was holding the small globe, the small mon- 
ster was holding the large globe, and the large monster was holding 
the medium-sized globe. Since this situation offended their keenly 
developed sense of symmetry, they proceeded to transfer globes 
from one monster to another so that each monster would have a 
globe proportionate to his own size. Monster etiquette complicated 

the solution of the problem since it requires: 

1. that only one globe may be transferred at a time; 
2. that if a monster is holding two globes, only the larger of the 

two may be transferred; and 
3. that a globe may not be transferred to a monster who is holding 

a larger globe. 

By what sequence of transfers could the monsters have solved this 
probem? 

(b) Change isomorph 

Three five-handed monsters were holding three crystal globes. Be- 
cause of the quantum-mechanical peculiarities of their neighborhood, 
both monsters and globes come in exactly three sizes with no other 
permitted: small, medium, and large. The medium-sized monster 
was holding the small globe, the small monster was holding the 
large globe, and the large monster was holding the medium-sized 
globe. Since this situation offended their keenly developed sense of 
symmetry, they proceeded to shrink and expand the globes so that 
each monster would have a globe proportionate to his own size. 
Monster etiquette complicated the solution of the problem since it 

requires: 

1. that only one globe may be shrunk or expanded at a time; 
2. if two globes are of the same size, only the globe held by the 

larger monster can be changed; and 
3. a globe may not be changed to a size that is held by a larger 

monster. 

By what sequence of transfers could the monsters have solved this 
problem? 
  

Source: J. R. Hayes and H. A. Simon, Psychological differences among prob- 

lem isomorphs, in J. Castellan, D. B. Pisoni, and G. Potts, eds., Cognitive the- 

ory, volume two (Hillsdale, N.J.: Erlbaum Associates, 1977).



266 The Transfer of Cognitive Skill 

it is possible to use verbal protocol data to discriminate between 
possible representations. 

Neves (1977) performed a similar kind of experiment investi- 
gating the link between instruction and representation. He 
taught subjects different strategies for solving the tower of Ha- 
noi and subsequently sought evidence for use of a particular 
strategy from subjects’ verbal protocols. Two of the strategies he 
used were called the goal-recursive strategy and the perceptual 
strategy by Simon (1975). These two are quite similar, and it was 
something of a challenge for Neves to be able to discriminate 
between them. The goal recursive strategy involves decompos- 
ing the goal of moving the largest pyramid into a series of goals 
involving smaller pyramids. Thus, given the situation in Figure 
9.2, a subject taught the goal-recursive strategy gave the follow- 
ing protocol: ‘’Go to peg 2 and try to move the next to largest, 
which is the 3.” 

In the perceptual strategy, one does not worry about pyra- 

mids but simply tries to move the largest disk to the goal peg. If 
it is blocked, one must detect the largest disk blocking the move. 
From a subject taught this strategy, Neves collected the follow- 
ing protocol: ‘‘The 4 has to go in to the 3 but the 3 is in the way.” 

Neves developed production systems for these strategies and 
was able to put the protocol statements he collected into close 
correspondence with the firing of individual rules. 

The Neves study demonstrates once again that instruction 
exerts a major influence on representation, and that represen- 
tations can be determined through protocol analysis. In the case 
illustrated here, the discrimination made was quite fine, and in 
a sense it demonstrates the power and precision of protocol 
analysis in the limit. In many cases, choice of representation is 
revealed by an almost cursory inspection of a protocol. For 
example, Neves (1977) stated that discrimination of yet another 
strategy, the radically different move-pattern strategy, from the 
two strategies described here was quite trivial, given a smatter- 
ing of protocol data. 

Disk 3 

[ Disk4 | Disk 1] | Disk 2 | 
tt a a 

Figure 9.2. Tower-of-Hanoi configuration corresponding to the Neves (1977) protocol 
excerpts. 

 



  

Representation and Transfer 267 

Previous Experience on Similar Tasks. In the typical transfer 
experiment, subjects learn task A and transfer to task B. The 
experimenter’s concern is to identify the knowledge that is ac- 
quired in task A that applies to task B. This fixation on the 
transition between tasks A and B is an experimental conven- 

ience, because in fact every learning situation is a transfer situ- 
ation. A much less well-defined yet equally interesting transfer 
situation is the one between pre-experimental knowledge and 
initial performance on task A. To take a trivial example, most 
preschool children or non-English-speaking adults would do 
very poorly on most psychological experiments administered to 
college sophomores in the United States. In this country, psy- 
chologists rely on a body of shared culture (minimally, knowl- 
edge of English) that makes compliance to experimental 
demands possible. 

Since a subject’s pre-experimental history exerts an influence 
on his representation of task A, and since transfer predictions 
require models of both task A and task B, studies of transfer 
must give at least some consideration to a subject’s pre- 
experimental history. This is done implicitly in most experi- 
ments by drawing subjects from a certain, restricted population. 
For example, in our calculus experiments, we were sure to get 
students who had completed high-school trigonometry. Thus, 
we could assume a certain level of basic mathematical compe- 
tence, no more and no less, in our subjects (transfer is well- 

behaved within a very narrow band of competence; if subjects 
come into the experiment knowing too little, they cannot learn 
and cannot transfer; the same is true if they know too much). 
These assumptions are often ill-founded, and violations are re- 

sponsible for much of the within-subjects variance we observed 
in our learning experiments. Indeed, Gagné and Paradise (1961) 
claimed that most individual differences in learning rates arise 
not from differences in native ability but rather from differences 
in prerequisite knowledge. 

Taken to its logical conclusion, this point concerning prior 
knowledge puts cognitive psychologists in the quixotic position 
of not being able to say anything about current behavior without 
knowing the entire past intellectual history of subjects. Indeed, 
concern over this point led to the initial emphasis on the study 
of tasks with low semantic content, such as tower of Hanoi. In 

these tasks, the subject’s prior knowledge had little or no effect. 
However, even in more complex, semantically rich tasks, there 
is reason to believe that the influences on representation are 
quite proximal and the picture is not so gloomy. Most encour-



268 The Transfer of Cognitive Skill. 

aging is the work of several researchers on early skill acquisi- 
tion, which shows that subjects rely heavily on task instructions 
and prefer analogies drawn from within the domain (Ross, 1982; 
VanLehn, 1983; Anderson, Farrell, and Sauers, 1984). This sug- 
gests that some of the more insidious and nonspecific influences 
of prior knowledge may be washed out by task instructions in 
many experimental situations. 

Practice. A third influence on representation is practice on the 
task. It is a well-documented fact that, as subjects acquire ex- 
pertise, their representations change, in terms of both grain size 
(Chase and Simon, 1973) and basic strategy (Larkin, McDer- 
mott, Simon, and Simon, 1980). Production systems typically 

model the effects of practice by either adding rules or modifying 
existing rules (Klahr, Langley, and Neches, 1987). Some of the 
mechanisms for change are composition, proceduralization, and 

discrimination. 
The fact that representations are not static but rather are 

changing throughout the course of skill acquisition presents a 
subtle problem to those interested in modeling transfer. Exactly 
what level of expertise serves as the basis for the models? The 
exact nature of this problem can be illustrated by an example 
drawn from the text-editing models. These models were some- 
what misleading in that they suggested that expertise could be 
captured by a finite number of rules. In fact, expertise is quite 
open-ended in that any number of special-case methods and 
decision rules can be acquired. For example, here is a sophisti- 
cated rule for choosing the substitution method over the line 
replacement method in the line editors: 

IF the goal is to replace =textl with =text2 in =line 
and the length of the resulting line is greater than 

the sum of the lengths of =textl and =text2 
THEN choose the substitution method. 

Generally, in text editing, one method is to be preferred to 
another when the number of keystrokes required is fewer. In 
the present instance, substitution is more efficient than line 
replacement in those cases where relatively small portions of a 
particular line are to be replaced. This is because, in substitu- 
tion, both the text to be deleted and the text to be inserted have 
to be typed as arguments, whereas in line replacement the line 
is deleted automatically and only the text to be inserted has to be 
typed. The preceding rule states that the break-even point for 
these two methods is roughly when the sum of the lengths of



Representation and Transfer 269 

the two arguments to the substitution command equals the 
length of the entire line. 

This rule did not appear in our simulations of the line editors. 
If it had, it would have led us to predict a slightly higher level of 
transfer between them, since this is a method that applies to 
both. We excluded the rule because there was no evidence in the 
keystroke protocols that the length of the arguments had any 
effect on choice of method. The point is that determining the 
level of expertise acquired by subjects after a certain amount of 
practice may be a subtle undertaking. As the level of expertise 
increases, the number of rules required to represent that exper- 
tise grows, and the predictions of transfer become more com- 
plex (this is a violation of one of the principles derived earlier 
from the transfer equation, that transfer is independent of the 
amount of practice on the training task). 

There are two encouraging aspects to the relationship be- 
tween practice and representation. First, in most laboratory 
studies of learning and transfer, the amount of time devoted to 

both training and transfer tasks (such as several hours) is quite 
small relatively speaking, and many of the more subtle effects of 
practice may be profitably ignored in most modeling situations. 
Second, practice curves are negatively accelerated, which means 
that after a certain point, additional practice has very little effect 
on overall performance. This effect may be due in part to the fact 
that many of the additional rules acquired through extended 
practice are limited in scope and apply only in special situations. 
The fact that these additional rules have little impact on perfor- 
mance implies that, in many practical situations, they will have 
little impact on transfer as well. 

Methods for determining representation 

Given the current state of the art, there is no substitute for 

careful experimentation and empirical analysis of representation 
questions. We are currently years away from making the kinds 
of back-of-the-envelope calculations of transfer advocated by 
Newell and Card (1985). In most cases, there are just too many 
subtle effects to make reasonably accurate transfer predictions in 
the absence of data. Currently, it is best to first sample behavior 
in the training and transfer tasks and develop models for both, 
bringing to bear as many empirical constraints as possible. Only 
then can we expect transfer predictions to be reasonably accu- 
rate.



270 The Transfer of Cognitive Skill 

What tools, then, are available to cognitive psychologists for 
the construction of models? This is a complicated question, and 
we can offer only a cursory answer here. Often the kinds of 
evidence brought to bear on model construction are limited only 
by the ingenuity of the model builder. This is especially true in 
a young science such as cognitive psychology, where new meth- 
odologies (such as eyetracking) are continually being developed. 

Rational and Empirical Task Analysis. Typically, model building 
involves a combination of rational and empirical task analysis 
conducted within the context of some theoretical framework. 
The sophistication of the underlying theoretical framework 
tends to determine the kinds of elements identified as compo- 
nents of the skill. Furthermore, the computational formalism 
within which a process model is stated carries with it a host of 
processing assumptions. Thus, any model stands upon a long 
and convoluted chain of inference. 

The goal of rational task analysis is to determine what kinds of 
knowledge are necessary for optimal performance on a task. 
Such analyses are guided by the principle of rationality, which 
states that an adaptive agent’s behavior is completely deter- 
mined by the agent’s goals and the task environment. Through 
rational task analysis, it is possible to develop a model of opti- 
mal behavior which serves as a useful comparison point with 
actual human behavior. If the task is simple and if extended 
practice is given, subjects may in fact reach the optimal level 
defined by this analysis, and in these situations, the ‘rational’ 
model may be quite good. However, in most cases, rational task 
analysis is only the first step in model building and must be 
quickly supported by empirical task analysis, which measures 
actual human behavior on the task. Empirical analyses are nec- 
essary because human beings often fall short of the ideal of total 
rationality. This fact is captured by the principle of limited ratio- 
nality (Simon, 1947), which states that total rationality is often 

thwarted by the processing limits imposed by the human 
information-processing system. 

Empirical task analysis is often an iterative process that starts 
with a model defined through rational task analysis. Successive 
refinements are made to the model in accordance with experi- 
mental evidence. Typically, the model tries to account for the 
sequence of behaviors and perhaps also the latencies between 
behaviors. Less often, error data is accounted for (but see Brown 
and Burton, 1982; VanLehn, 1983). The crowning achievement 

of the analysis is to use the model to predict some new set of 
data.



Representation and Transfer 271 

A good example of the use of rational and empirical task 
analysis is the development of the GOMS model of text editing 
(Card, Moran, and Newell, 1983), which served as the basis of 
some of our transfer predictions. We felt we were on fairly solid 
ground making our predictions because the GOMS model had 
been validated through an exhaustive modeling process. Card, 
Moran, and Newell proposed that complex text-editing behavior 
could be modeled by a simple sequence of elementary informa- 
tion processes consisting of the setting of goals, the execution of 
operators, and the selection among methods. They supported 
their model through extensive keystroke analyses of experts. 
The GOMS model did quite well at accounting for the sequence 
of keys struck, interkeystroke latencies, and aggregate times. 
The model was used to make predictions on a new set of expert 
data, and again it did quite well. 

Verbal Protocols. In most empirical task analyses, many of the 
more superficial elements of the skill (those elements represent- 
ing operators) can be determined by simply observing a sub- 
ject’s manipulation of objects in the task environment. For 
example, in text editing, the stream of keystrokes can be exam- 
ined to determine the operators a subject is using and further to 
determine common combinations of those operators (such as 
methods). Similarly, in the LISP and calculus tutoring systems, 
operators were defined as discrete operations on objects defined 
by the interface. In these cases, much of the skill can be defined 

behaviorally, that is, by examining an overt sequence of behav- 
iors. However, what is missing in these observations and what 
is perhaps most difficult to determine using standard task anal- 
ysis techniques is the purely cognitive component of a skill, 
namely the component that represents goal structures and 
plans. To get a fix.on this component, the most powerful tool 
available is verbal protocol analysis. 

The technique of verbal protocol analysis and its role in the 
development of process models is well documented in Newell 
and Simon (1972) and Ericsson and Simon (1984). To take a 

verbal protocol, one simply instructs a subject to think aloud 
while solving a problem or performing a skill. The simple model 
of verbalization presented in Ericsson and Simon states that 
subjects are capable of verbalizing the running contents of work- 
ing memory. Working within the production system framework, 
the contents of working memory would include elements 
matched by the left-hand sides of productions as well as ele- 
ments deposited by the right-hand sides. Since goal structures 
are often included in the tests and actions of productions, it



272 The Transfer of Cognitive Skill 

follows that subjects have conscious access to them. Goal struc- 
tures and plans are therefore candidates for verbalization (Nis- 
bett and Wilson, 1977). In fact, ‘‘protocols almost always contain 
information that reveals the subjects’ control and evaluative 
processes and goals’’ (Ericsson and Simon, 1984, p. 264). 

A good illustration of the use of protocol analysis to determine 
goal structures is the work of Ericsson (1975). Ericsson told his 
subjects to think aloud as they solved a simple problem called 
the Eight puzzle. Figure 9.3 shows this puzzle, consisting of a 3 
x 3 matrix of numbered tiles, with one missing. Typically, the 

subject is presented with an initial, unordered configuration of 
the tiles and is asked to put the tiles in order. Attainment of this 
goal involves the repeated shuffling of tiles in and out of the 
single space to change the overall arrangement. 

Individual statements within the protocols were classified as 
relating goal information on the basis of a very superficial anal- 
ysis. If the statement contained verbs of a type such as shall, 
will, want, must, or need, the statement was categorized as a 

goal statement. Included in the analysis were 274 goal state- 
ments gathered from 10 subjects. Although Ericsson observed a 
variety of goal statements, the clear majority or 59 percent, 
involved the placement of a single tile. Moreover, most of these 
single-tile statements expressed the intention of getting the tile 
into its final resting position rather than next to a contiguously 
numbered tile. Of the remaining statements that referred to 
more than one tile, only one made reference to tiles that were 
not contiguously numbered, and only one referred to tiles that 
were on different rows in the final configuration. Given the 
combinations of tiles that are logically possible in goal state- 
ments, this restricted pattern is quite remarkable, and it reveals 

    

    

    

                    

4|51]8 | a2 | 3 

| | 2] 3 415] 6 

~ | 6 | 8 

(a) initial state (b) goal state 

Figure 9.3. Classic eight puzzle.



Representation and Transfer 273 

much about the overall plan for the solution of this problem. 
Although protocol analysis is a useful tool for revealing cog- 

nitive structures, it is in fact a rather blunt instrument and is not 

without its problems. One of these problems is incompleteness 
of reports. Although in theory subjects have conscious access to 
all elements in working memory, it is unreasonable to expect 
that they will verbalize all contents at all times. The incomplete- 
ness of verbal protocols becomes evident when comparing the 
verbalizations of a single subject on different trials of the same 
task, or when comparing concurrent verbalizations with retro- 
spective reports. 

Another problem of protocol analysis is lack of coverage. Erics- 
son and Simon (1984) pointed out that protocol analysis does 
not work well with all kinds of tasks. Particularly troublesome 
are tasks that involve heavy doses of text comprehension, per- 
ceptual, or recognition processes. Another way of stating this is 
that protocol analysis does not reveal much about the underly- 
ing cognitive structure of tasks that have been highly auto- 
mated. This does not pose much of a problem in analyses of 
transfer, since automated processes like text comprehension 
show little learning and can therefore be excluded from calcu- 
lations of transfer. However, in certain cases, goal structures 

may be learned and automated over the course of the experi- 
ment. For this reason, it may be best to take protocols from 
subjects at middling levels of performance. 

Protocol analysis has other problems of induction. Aside from 
problems stemming from incompleteness, it is often difficult to 
derive the exact nature of a rule from a protocol statement. For 
one thing, it is difficult to establish the generality of a rule, since 
subjects rarely if ever state the rule in variabilized form. For 
example, Newell and Simon (1972) gathered this protocol state- 
ment from a subject solving a cryptarithmetic problem: “Since D 
+ D = G, G must be even.” It seems obvious in this case that 

the exact letters stated in this relation are completely irrelevant 
and that they should therefore be variabilized in the represen- 
tation of the rule in the simulation: 

IF the sum of =number and =number is = result 

THEN =result is an even number. 

Although this case is fairly clear, consider this fictional protocol 
statement: “Since G is an even number, G + 1 is an odd 

number.” In this case, is 1 a special constant, or is it simply an 
instance of an odd number? In other words, is the rule even plus



274 The Transfer of Cognitive Skill 

1 yields odd, or even plus odd yields odd? In the absence of 
other data, it is impossible to make this discrimination. 

Another problem arises from the danger of taking protocol 
statements too literally. For example, Ericsson and Simon (1984) 
presented this segment from a subject performing mental mul- 
tiplication: “First, I will put the largest number on top .. .” 
Ericsson and Simon warned against the strict logical interpreta- 
tion of the word “‘largest,”” proposing that the subject will not 
heed the relative magnitudes of the two multiplicands unless 
they differ greatly, as they did in this case. In other words, 
missing from this protocol is an implicit test of the relative 
magnitudes of the two numbers which supplies the necessary 
context for this rule to fire. 

In sum, protocol analysis gives us a window on the contents 
of working memory, but not the rules that are generating these 
contents. Although it is often difficult to determine the precise 
nature of individual rules, when used in conjunction with other 

modeling tools, protocol analysis provides strong additional 
constraints on representation. It is important to point out that 

protocol analysis is just one more tool in the model builder’s kit. 

Conclusion 

The reader should not leave this chapter with the conclusion 
that representational issues pose a particular problem for the 
study of transfer. They are problems for the study of all cogni- 
tive phenomena, and for the same reason: there is the danger 
that the theorist can salvage a mistaken theory by suitable choice 
of representation. If anything, transfer is less imperiled by rep- 
resentational indeterminism than are most phenomena because 
sO many constraints can be applied to the representation before 
making behavioral predictions. 

The problem of indeterminacy of representation has been dis- 
cussed at length by Anderson, (1976; 1983). The general conclu- 
sion is that, for any representation-process pair, there are many 
other pairs of different representations and processes that make 
the same behavioral predictions. In the current situation, we 
have proposed a process (the identical elements model of trans- 
fer) and are worried about whether it can be insulated from 
empirical disconfirmation by an appropriate choice of represen- 
tation (the cognitive elements). None of the results on 
representation-process indeterminacy imply that it is impossible 
to test our process assumption given a sufficient set of converg- 
ing constraints.



Representation and Transfer 275 

The “‘process” in the identical elements model of transfer is an 
interesting one from a formal standpoint. It is an identity oper- 
ator and, as such, is really no process at all. This means that, if 
the identical elements model were correct, the transfer para- 
digm would become a very potent one for placing constraints on 
knowledge representation. If we see that component i of task A 
transfers completely to component j of task B (as we saw in some 
of our experiments), we are in position to assert that the rules 
underlying the components are the same. This in turn places 
strong constraints on the form of the rules. For instance, we saw 

in our calculus experiments that the rules for translating eco- 
nomics cover stories transferred perfectly to geometry cover 
stories. Given our assumption of a null transfer process, this 
result meant that the rules had to be sufficiently general to 
handle both types of cover stories. 

Finally, we feel that, in most cases where relatively high levels 
of performance are achieved, rational constraints provide a sub- 
stantial guide to knowledge representation. Indeed, the rules 
we have developed in our models have largely been the obvious 
ones given the demands of the task. The second author is in the 
process of developing a new theory of cognition called ‘rational 
analysis’ which can be seen as an extension of Simon’s limited- 
rationality hypothesis. It claims that human behavior can be 
predicted from a rational analysis of the task if one takes into 
account the basic information-processing limitations under 
which the person operates. Applied to the current problem of 
rule representation, the theory predicts that a subject will adopt 
a rule set which: 

1. Minimizes the number of rules that have to be learned. 
2. Minimizes working memory load. 
3. Minimizes the amount of overt behavior (for example, this 

principle would favor a text editing procedure that involved 
fewer keystrokes). 

These principles of course might conflict, in which case some 
joint minimum would be sought. 

The results of the Elio experiment concerning representation 
could have been predicted by the principles of rational analysis. 
She proposed that subjects represented the serial position of 
component steps in their rules since there was no transfer when 
the positions did not match. It turns out that in her experimental 
situation there is substantial benefit in representing the rules in 
this way. Most importantly, working memory load is reduced 
because internal control elements or goals need not be main-



276 The Transfer of Cognitive Skill 

tained, and the serial position of a step can be read right off the 
terminal screen (see Figure 9.1). Additionally, specializing the 
rules in terms of serial position costs nothing in terms of number 
of rules to be learned. Since the step always occurred in the 
same position during training, there was no loss in applicability 
across problems. This implies that, if the rules had been prac- 
ticed in different orders during training, serial position would 
not have been included in the rules, and transfer would have 

been successful. Indeed, in a follow-up experiment involving 
integrative rather than component steps, Elio found that sub- 
jects learned and transferred general rules only if those rules 
appeared in more than one context during training. In this case, 
subjects learned more general rules because that minimized the 
total number of new rules to be learned. This result is consistent 
with classic work (e.g. Duncan, 1958) as well as with more 
recent research (e.g. Gick and Holyoak, 1980) showing that 
subjects adopt more general representations when given vari- 
able training. 

The rational analysis theory obviously needs to be developed 
more fully before it can be used to provide rule representations 
generally. We view it as a promise for the future.



References 

Abruzzi, A. 1956. Work, workers, and work measurement. New York: 

Columbia University Press. 
Allport, G. W. 1937. Personality. New York: Henry Holt. 
Anderson, J. R. 1976. Language, memory, and thought. Hillsdale, N.J.: 

Erlbaum Associates. 
1982. Acquisition of cognitive skill. Psychological Review, 89, 

369-406. 
1983. The architecture of cognition. Cambridge, Mass.: Harvard 

University Press. 
1986. Knowledge compilation: the general learning mechanism. 

In R. Michalski, J. Carbonell, and T. Mitchell, eds., Machine learning, 

vol. 2, pp. 289-310. Los Altos, Calif.: Morgan Kaufmann. 
1987. Production systems, learning, and tutoring. In D. Klahr, 

P. Langley, and R. Neches, eds., Production system models of learning 
and development, pp. 437-458. Cambridge, Mass.: MIT Press. 

In press. Analysis of student performance with the LISP tutor. 
In N. Frederiksen, R. Glaser, A. Lesgold, and M. Shaffo, eds., Diag- 

nostic monitoring of skill and knowledge acquisition. Hillsdale, N.J.: Erl- 
baum Associates. 

Anderson, J. R., and Bower, G. H. 1973. Human associative memory. 

Washington, D.C.: Winston. 
Anderson, J. R., and Reiser, B. J. 1985. The LISP tutor. Byte, 10, 159-175. 
Anderson, J. R., and Thompson, R. Forthcoming. Use of analogy in a 

production system architecture. In A. Ortony et al., eds., Similarity 
and analogy. Cambridge: Cambridge University Press. 

Anderson, J. R., Farrell, R., and Sauers, R. 1984. Learning to program 
in LISP. Cognitive Science, 8, 87-129. 

Anderson, J. R., Corbett, A. T., and Conrad, F. Forthcoming. Skill 
acquisition and the LISP tutor. 

Anderson, J. R., Corbett, A. T., and Reiser, B. J. 1987. Essential LISP. 

Reading, Mass.: Addison-Wesley. 

  

  

  

  

 



278 References 

Anderson, J. R., Boyle, C. F., Corbett, A, and Lewis, M. W. In press. 
Cognitive modelling and intelligent tutoring. Artificial Intelligence. 

Angell, J. R. 1908. The doctrine of formal discipline in the light of the 
principles of general psychology. Educational Review, 36, 1-14. 

Anzai, Y., and Uesato, Y. 1982. Learning recursive procedures by mid- 

dle school children. In Proceedings of the Fourth Annual Conference of the 
Cognitive Science Society, Ann Arbor, Mich. 

Atwood, M. E., and Polson, P. G. 1976. A process model for water jug 

problems. Cognitive Psychology, 8, 191-216. 
Ausubel, D. P. 1968. Educational psychology: a cognitive view. New York: 

Holt, Rinehart, and Winston. 

Bilodeau, E. A., and Bilodeau, I. McD. 1961. Motor-skills learning. 
Annual Review of Psychology, 12, 243-280. 

Bobrow, D. G. 1964. A question-answering system for high school 
algebra word problems. AFIPS Conference Proceedings, 26, 577-589. 

Boring, E. G. 1950. History of experimental psychology. New York: 
Appleton-Century-Crofts. 

Bower, G. H., and Hilgard, E. R. 1981. Theories of learning. Englewood 

Cliffs, N.J.: Prentice-Hall. 
Bower, G. H., Black, J. B., and Turner, T. J. 1979. Scripts in memory for 

text. Cognitive Psychology, 11, 177-220. 
Brain, L. 1965. Speech disorders: aphasia, apraxia, and agnosia. London: 

Butterworth. 
Brown, A. L. 1981. Metacognition and reading and writing: the devel- 

opment and facilitation of selective attention strategies for learning 
from text. In M. L. Kamil, ed., Directions in reading: research and 
instruction. Washington, D.C.: National Reading Conference. 

1982. Learning to learn how to read. In J. Langer and T. Smith- 
Burke, eds., Reader meets author, bridging the gap: a psycholinguistic and 

social linguistic perspective. Newark, N.J.: Dell. 
Brown, A. L., Bransford, J. D., Ferrara, R. A., and Campione, J. C. 

1983. Learning, remembering, and understanding. In J. H. Flavell 
and E. M. Markman, eds., Handbook of child psychology, vol. 4, Cogni- 
tive development. New York: Wiley. 

Brown, A. L., and Kane, M. J. In press. Preschool children can learn to 
transfer: learning to learn and learning from example. Cognitive Psy- 

chology. 
Brown, J. S., and Burton, R. B. 1982. Diagnostic models for procedural 

bugs in basic mathematical skills. Cognitive Science, 2, 155-192. 
Brown, J. S., and VanLehn, K. 1980. Repair theory: a generative theory 

of bugs in procedural skills. Cognitive Science, 4, 379-426. 
Brownston, L., Farrell, R., Kant, E., and Martin, N. 1985. Programming 

expert systems in OPS5: an introduction to rule-based programming. Read- 
ing, Mass.: Addison-Wesley. 

Bruner, J. S. 1966. Toward a theory of instruction. New York: W. W. 

Norton. 
Buckland, P. R. 1968. The ordering of frames in a linear program. 

Programmed Learning and Educational Technology, 5, 197-205. 

 



References 279 

Bunch, M. E. 1936. The amount of transfer in rational learning as a 

function of time. Journal of Comparative Psychology, 22, 325-337. 
Bunch, M. E., and Lang, E. S. 1939. The amount of transfer of training 

from partial learning after varying intervals of time. Journal of Com- 
parative Psychology, 27, 449-459. 

Bunch, M. E., and McCraven, V. 1938. Temporal course of transfer in 

the learning of memory material. Journal of Comparative Psychology, 25, 
481-496. 

Carbonell, J. G. 1983. Learning by analogy: formulating and generaliz- 
ing plans from past experience. In R. S. Michalski, J. G. Carbonell, 
and T. M. Mitchell, eds., Machine learning, pp. 137-162. Palo Alto, 
Calif.: Tioga Press. 

Card, S. K., Moran, T. P., and Newell, A. 1976. The manuscript editing 

task: a routine cognitive skill. Tech. Rep. SSL-76-8, Xerox Palo Alto 
(Calif.) Research Center. 

Card, S. K., Moran, T. P., and Newell, A. 1980. Computer text-editing: 

an information processing analysis of a routine cognitive skill. Cog- 
nitive Psychology, 12, 32-74. 

Card, S. K., Moran, T. P., and Newell, A. 1983. The psychology of 

human-computer interaction. Hillsdale, N.J.: Erlbaum Associates. 
Carpenter, T. P., and Moser, J. M. 1982. The development of addition 

and substraction problem-solving skills. In T. P. Carpenter, J. M. 
Moser, and T. Romberg, eds., Addition and subtraction: a cognitive 

perspective. Hillsdale, N.J.: Erlbaum Associates. 
Carraher, T. N., Carraher, D. W., and Schliemann, A. D. 1985. Math- 

ematics in the streets and in schools. British Journal of Developmental 
Psychology, 3, 21-29. 

Carroll, J. B. 1940. Knowledge of English roots and affixes as related to 
vocabulary and Latin study. Journal of Educational Research, 34, 
256-261. 

Chase, W. G., and Ericsson, K. A. 1982. Skill and working memory. In 
G. H. Bower, ed., The psychology of learning and motivation. New York: 
Academic Press. 

Chase, W. G., and Simon, H. A. 1973. The mind’s eye in chess. In 
W. G. Chase, ed., Visual information processing. New York: Academic 
Press. 

Cheng, P. W., and Holyoak, K. J. 1985. Pragmatic reasoning schemas. 
Cognitive Psychology, 17, 391-416. 

Cheng, P. W., Holyoak, K. J., Nisbett, R. E., and Oliver, L. M. 1986. 

Pragmatic versus syntactic approaches to training deductive reason- 
ing. Cognitive Psychology, 18, 293-328. 

Chi, M. T. H., Feltovich, P., and Glaser, R. 1981. Categorization and 

representation of physics problems by experts and novices. Cognitive 
Science, 5, 121-152. 

Chi, M. T. H., Glaser, R., and Rees, E. 1982. Expertise in problem 

solving. In R. J. Sternberg, ed., Advances in the psychology of human 
intelligence. Hillsdale, N.J.: Erlbaum Associates. 

Chomsky, N. 1957. Syntactic structures. The Hague: Mouton.



280 References 

1965. Aspects of the theory of syntax. Cambridge, Mass.: MIT 

Press. 
Clark, E., and Hecht, B. 1983. Comprehension, production, and lan- 

guage acquisition. Annual Review of Psychology, 34, 325-349. 
Clement, J. 1983. A conceptual model discussed by Galileo and used 

intuitively by physics students. In D. Gentner and A. L. Stevens, 
eds., Mental models. Hillsdale, N.J.: Erlbaum Associates. 

Cohen, N., and Corkin, S. 1981. The amnesiac patient H.M.: learning 
and retention of a cognitive skill. In Proceedings of the Eleventh Annual 

Meeting, Society for Neuroscience, Los Angeles. 
Cohen, J., Dunbar, K., and McClelland, J. Forthcoming. On the control 

of automatic processes: a parallel distributed model of the Stroop 
effect. 

Conrad, F., and Anderson, J. R. 1988. The process of learning LISP. In 

Proceedings of the Tenth Annual Conference of the Cognitive Science Society, 
Montreal. 

Coxe, W. W. 1925. The influence of Latin on the spelling of English 

words. Journal of Educational Research Monographs, 7. 
Dalbey, J., and Linn, M. 1984. Spider world: a robot language for 

learning to program. In Proceedings of the American Educational Research 
Association Conference, New Orleans. 

D’Andrade, R. 1982. Reason versus logic. Paper presented at the Sym- 
posium on the Ecology of Cognition, Greensboro, N.C. 

Damasio, A. 1981. The nature of aphasia: signs and syndromes. In 
M. Sarno, ed., Acquired aphasia. New York: Academic Press. 

Day, J. D. 1980. Training summarization skills: a comparison of teach- 
ing methods. Doctoral diss., University of Illinois. 

Digital Equipment Corporation. 1982. Introduction to the EDT editor. 

Marlborough, Mass. 

Dorsey, M. N., and Hopkins, L. T. 1930. The influence of attitude upon 
transfer. Journal of Educational Psychology, 21, 410-417. 

Duncan, C. P. 1958. Transfer after training with single versus multiple 
tasks. Journal of Experimental Psychology, 55, 63-72. 

Duncker, K. 1945 (1935). On problem-solving, trans. L. 5. Lees. Psy- 

chological Monographs, 58 (270). 
Ekstrom, R. B., French, J. W., and Harman, H. H. 1976. Manual for kit 

of factor-referenced cognitive tests. Princeton, N.J.: Educational Test- 
ing Service. 

Elio, R. 1986. Representation of similar well-learned cognitive proce- 
dures. Cognitive Science, 10, 41-74. 

Ellis, H. C. 1965. The transfer of learning. New York: Macmillan. 
Ericsson, K. A. 1975. Instruction to verbalize as a means to study problem 

solving processes with the Eight Puzzle. Report 458 from the Department 
of Psychology, University of Stockholm. 

Ericsson, K. A., and Simon, H. A. 1984. Protocol analysis: verbal reports as 
data. Cambridge, Mass.: MIT Press. 

Ernst, G. W., and Newell, A. 1969. GPS: A case study in generality and 
problem solving. New York: Academic Press. 

 



References 281 

Fawcett, H. P. 1935. Teaching for transfer. Mathematics Teacher, 28, 
465-472. 

Fitts, P. M., and Posner, M. I. 1967. Human performance. Belmont, Calif.: 
Brooks Cole. 

Flavell, J. H. 1978. Reply to Brainerd: the stage question in cognitive- 
developmental theory. Behavioral and Brain Sciences, 2, 187. 

Flexman, R. E., Matheny, W. G., and Brown, E. L. 1950. Evaluation of 

the Link and special methods of instruction. Aeronautics Bulletin 8, Uni- 
versity of Illinois. 

Flower, L. S., and Hayes, J. R. 1977. Problem-solving strategies and the 
writing process. College English, 39, 449-461. 

Fodor, J. A., Bever, T. G., and Garrett, M. F. 1974. The psychology of 
language. New York: McGraw-Hill. 

Fong, G. T., Krantz, D. H., and Nisbett, R. E. 1986. The effects of 

statistical training on thinking about everyday problems. Cognitive 
Psychology, 18, 253-292. 

Forgy, C. 1979. On the efficient implementation of production systems. Doc- 
toral diss., Carnegie-Mellon University. 

Gagne, R. M. 1966. The conditions of learning. New York: Holt, Rinehart, 

and Winston. 
Gagne, R, M., and Bassler, O. C. 1963. Study of retention of some 

topics of elementary non-metric geometry. Journal of Educational Psy- 
chology, 54, 123-131. 

Gagne, R. M., and Paradise, N. E. 1961. Abilities and learning sets in 
knowledge acquisition. Psychological Monographs, 75 (14). 

Gagne, R. M., and Staff of University of Maryland Math Project. 1965. 
Some factors in learning nonmetric geometry. Monographs of Social 
Research in Child Development, 30, 42-49. 

Gagne, R. M., Baker, K. E., and Foster, H. 1950. On the relation 

between similarity and transfer of training in the learning of discrim- 
inative motor units. Psychological Review, 57, 67-79. 

Gagne, R. M., Forster, H., and Crowley, M. E. 1948. The measurement 
of transfer of training. Psychological Bulletin, 45, 97-130. 

Gardner, M. 1978. Aha! insight. New York: W. H. Freeman. 
Garlick, 5S. 1984. Computer programming and cognitive outcomes: a 

classroom evaluation of LOGO. Master’s thesis, Flinders University 

of South Australia. 
Gavurin, E. I., and Donahue, V. M. 1961. Logical sequence and random 

sequence. Automated Teaching Bulletin, 1, 3-9. 
Geschwind, N. 1972. Language and the brain. Scientific American, 226, 

76-83. 
Gick, M. L., and Holyoak, K. J. 1980. Analogical problem solving. 

Cognitive Psychology, 12, 306-355. 
1983. Schema induction and analogical transfer. Cognitive Psy- 

chology, 15, 1-38. 
Goldberg, D. J. 1974. The effects of training in heuristics methods on 

the ability to write proofs in number theory. Doctoral diss., Columbia 
University. 

 



282 References 

Goldin-Meadow, S., Seligman, M., and Gelman, R. 1976. Language in 

the two-year-old. Cognition, 4, 189-202. 

Gomez, L. M., Egan, D. E., Wheeler, E., Sharma, D., and Gruchacz, 

A. 1983. How interface design determines who has difficulty learn- 
ing to use a text editor. In Proceedings of CHI '83 Human Factors in 
Computing Systems Conference. New York: Association for Comput- 
ing Machinery. 

Gomez, L. M., Egan, D. E., and Bowers, C. 1986. Learning to use a text 

editor: some learner characteristics that predict success. Human- 
Computer Interaction, 2, 1-23. 

Gorman, H., and Bourne, L. E. 1983. Learning to think by learning 
LOGO: rule learning in third grade computer programmers. Bulletin 
of the Psychonomic Society, 21, 165-167. 

Gosling, J. 1981. Unix EMACS user manual. Technical Report, Computer 
Science Department, Carnegie-Mellon University. 

Griggs, R. A., and Cox, J. R. 1982. The elusive thematic-materials effect 

in Wason’s selection task. British Journal of Psychology, 73, 407-420. 

Halasz, F., and Moran, T. P. 1982. Analogy considered harmful. In 
Proceeding of the Human Factors in Computer Systems Conference, 
Gaithersburg, MD. 

Hammerton, M. 1967. Visual factors affecting transfer of training from 
a simulated to a real control situation. Journal of Applied Psychology, 51, 
46-49. 

1981. Tracking. In D. Holding, ed., Human skills. New York: 
Wiley. 

Harlow, H. F. 1949. The formation of learning sets. Psychological Review, 
56, 51-65. 

Hartung, M. L. 1942. Teaching of mathematics in senior high school 
and junior college. Review of Educational Research, 12, 425-434. 

Harvey, J., and Romberg, T. 1980. Problem-solving studies in mathematics. 
Madison: Wisconsin R&D Center. 

Hayes, J. R. 1980. Teaching problem-solving mechanisms. In D. T. 
Tuma and F. Reif, eds., Problem solving and education, Hillsdale, N.J.: 

Erlbaum Associates. 
Hayes, J. R., and Simon, H. A. 1974. Understanding written problem 

instructions. In L. Gregg, ed., Knowledge and cognition. Hillsdale, N.J.: 
Erlbaum Associates. 

1977. Psychological differences among problem isomorphs. In 
J. Castellan, D. B. Pisoni, and G. Potts, eds., Cognitive theory, vol. 2. 
Hillsdale, N.J.: Erlbaum Associates. 

Higginson, G. 1931. Fields of psychology: a study of man and his environ- 
ment. New York: Holt. 

Hilgard, E. R., Irvine, R. P., and Whipple, J. E. 1953. Rote memoriza- 

tion, understanding, and transfer: an extension of Katona’s card trick 
experiments. Journal of Experimental Psychology, 46, 288-292. 

Holding, D. 1981. Skills research. In D. Holding, ed., Human skills. New 
York: Wiley. 

Holyoak, K. J. 1985. The pragmatics of analogical transfer. In G. H. 

  

 



References 283 

Bower, ed., The psychology of learning and motivation, vol. 19. New 

York: Academic Press. 
Holyoak, K. J., Junn, E., and Billman, D. 1984. Development of ana- 

logical problem solving skills. Child Development, 55, 2042-55. 
Huttenlocher, J. 1974. The origins of language comprehension. In 

R. Solso, ed., Theories in cognitive psychology. Potomac, Md.: Erlbaum 

Associates. 
Inhelder, B., and Piaget, J. 1964. The early growth of logic in the child: 

classification and seriation. New York: Norton. 
Jeffries, R. 1978. The acquisition of expertise on missionaries-cannibals 

and waterjug problems. Doctoral diss., University of Colorado. 
Jeffries, R., Polson, P. G., Razran, L., and Atwood, M. E. 1977. A 

process model for missionaries-cannibals and other river-crossing 

problems. Cognitive Psychology, 9, 412-440. 
Johnson-Laird, P. N. 1983. Mental models. Cambridge, Mass.: Harvard 

University Press. 
Johnson-Laird, P. N., Legrenzi, P., and Legrenzi. M. 1972. Reasoning 

and a sense of reality. British Journal of Psychology, 63, 395-400. 
Judd, C. H. 1908. The relation of special training and general intelli- 

gence. Educational Review, 36, 28-42. 

Karat, J., Boyes, L., Weisgerber, S., and Schafer, C. 1986. Transfer 
between word processing systems. In M. Mantei and P. Orbeton, 
eds., Proceedings of CHI ’86 Human Factors in Computing Systems. New 
York: Association for Computing Machinery. 

Karmiloff-Smith, A. 1977. More about the same: children’s understand- 

ing of post-articles. Journal of Child Language, 4, 377-394. 
Katona, G. 1940. Organizing and memorizing. New York: Columbia Uni- 

versity Press. 
Katz, H., and Beilin, H. 1976. A test of Bryant's claims concerning the 

young child’s understanding of quantitative invariance. Child Devel- 
opment, 47, 877-880. 

Kay, D. S., and Black, J. B. 1985. The evolution of knowledge repre- 
sentations with increasing expertise in using systems. In Proceedings 
of the Seventh Annual Conference of the Cognitive Science Society, Boston. 

Kelley, H. H. 1973. The process of causal attribution. American Psychol- 
ogist, 28, 107-128. 

Kernighan, B. W. 1980. A tutorial introduction to the UNIX text editor. 

Technical memorandum, Bell Telephone Laboratories, Murray Hill, 
N.J. 

Kessler, C. 1988. Transfer of programming skills in novice LISP learn- 
ers. Doctoral diss., Carnegie-Mellon University. 

Kessler, C., and Anderson, J. R. 1986. Learning flow of control: recur- 
sive and iterative procedures. Human-Computer Interaction, 2, 135-166. 

Kieras, D., and Bovair, S. 1984. The role of a mental model in learning 
to operate a device. Cognitive Science, 8, 255-273. 

1986. The acquisition of procedures from text: a production- 
system analysis of transfer of training. Journal of Memory and Lan- 
guage, 25, 507-524. 

 



284 References 

Kieras, D., and Polson, P. 1985. An approach to the formal analysis of 
user complexity. International Journal of Man-Machine Studies, 22, 
365-394. 

Kinsbourne, M. 1978. Reply to Brainerd: the stage question in cognitive- 
developmental theory. Behavioral and Brain Sciences, 2, 191. 

Klahr, D., and Carver, S. 1988. Cognitive objectives in a LOGO debug- 
ging curriculum: instruction, learning, and transfer. Cognitive Psychol- 
ogy, 20, 362-404. 

Klahr, D., Langley, P., and Neches, R. 1987. Production system models of 

learning and development. Cambridge, Mass.: MIT Press. 
Kling, R. E. 1971. A paradigm for reasoning by analogy. Artificial Intel- 

ligence, 2, 147-178. 
Kotovsky, K., Hayes, J. R., and Simon, H. A. 1985. Why are some 

problems hard? Evidence from tower of Hanoi. Cognitive Psychology, 
17, 248-294. 

Kunda, Z., and Nisbett, R. E. 1986. The psychometrics of everyday life. 
Cognitive Psychology, 18, 195-224. 

Kurland, D. M., and Pea, R. D. 1983. Children’s mental models of 

recursuve LOGO programs. In Proceedings of the Fifth Annual Confer- 
ence of the Cognitive Science Society, Rochester, N.Y. 

Laird, J. E., Rosenbloom, P. S., and Newell, A. (1984). Towards chunk- 

ing as a general learning mechanism. In Proceedings of the American 
Association of Artificial Intelligence Conference, Austin, Texas. 

Larkin, J., and Simon, H. A. 1987. Why a diagram is (sometimes) worth 

ten thousand words. Cognitive Science, 11, 65-100. 

Larkin, J., McDermott, J., Simon, D. P., and Simon, H. A. 1980. Expert 
and novice performance in solving physics problems. Science, 208, 
1335-42. 

Lave, J., Murtaugh, M., and de La Rocha, O. 1984. The dialectical 

construction of arithmetic practice. In B. Rogoff and J. Lave, eds., 

Everyday cognition: its development in social context. Cambridge, Mass.: 
Harvard University Press. 

Lesgold, A. M. 1984. Acquiring expertise. In J. R. Anderson and 5S. M. 
Kosslyn, eds., Tutorials in learning and memory, pp. 31-60. San Fran- 
cisco: W. H. Freeman. 

Lesgold, A. M., and Curtis, M. E. 1981. Learning to read words effi- 

ciently. In A. M. Lesgold and C. A. Perfetti, eds., Interactive processes 
in reading. Hillsdale, N.J.: Erlbaum Associates. 

Lesgold, A. M., and Resnick, L. B. 1982. How reading difficulties 
develop: perspectives from a longitudinal study. In J. P. Das, R. F. 
Mulcahy, and A. E. Wall, eds., Theory and research in reading disabilt- 

ties. New York: Plenum. 
Levin, G. R., and Baker, B. L. 1963. Item scrambling in a self- 

instructional program. Journal of Educational Psychology, 54, 138-143. 

Lewis, D. 1959. Latest news and views regarding individual suscepti- 
bility to interference in the performance of perceptual-motor tasks. 
Paper presented at the annual meeting of the Midwestern Psycho- 
logical Association, Chicago.



References 285 

Lewis, M. W., and Anderson, J. R. 1985. Discrimination of operator 

schemata in problem solving: learning from examples. Cognitive Psy- 
chology, 17, 26-65. 

Forthcoming. Declarative and procedural transfer in logic. 
Linn, M. C., and Fisher, C. W. 1983. The gap between promise and 

reality in computer education: planning a response. In Making our 

schools more effective: a conference for California educators. San Francisco: 

ACCCEL. 
Lucas, J. F. 1972. An exploratory study on the diagnostic teaching of 

heuristic problem-solving strategies in calculus. Doctoral diss., Uni- 
versity of Wisconsin. 

Luchins, A. S. 1942. Mechanization in problem solving. Psychological 

Monographs, 54 (248). 

Mack, R., Lewis, C. H., and Carroll, J. 1983. Learning to use word 

processors: problems and prospects. ACM Transactions on Office In- 
formation Systems, 3, 254-271. 

Martin, E. 1965. Transfer of verbal paired associates. Psychological Re- 
view, 72, 327-343. 

Marx, M. H. 1944. The effects of cumulative training upon retroactive 

inhibition and transfer. Comparative Psychology Monographs, 94. 
McClelland, J., and Rumelhart, D. 1981. An interactive model of con- 

text effects in letter perception: Part I, an account of basic findings. 
Psychological Review, 88, 375-407. 

McCloskey, M. 1983. Naive theories of motion. In D. Gentner and A. L. 
Stevens, eds., Mental models. Hillsdale, N.J.: Erlbaum Associates. 

McDermott, D. 1981. Artificial intelligence meets natural stupidity. In 

J. Haugeland, ed., Mind design. Cambridge, Mass.: MIT Press. 
McGilly, K., Poulin-DuBois, D., and Schultz, T. R. 1984. The effect of 

learning LOGO on children’s problem solving skills. Technical 
Report., Department of Psychology, McGill University. 

McKendree, J. E., and Anderson, J. R. 1987. Frequency and practice 
effects on the composition of knowledge in LISP evaluation. In J. M. 
Carroll, ed., Cognitive aspects of human-computer interaction. Cam- 

bridge, Mass.: MIT Press. 
Meiklejohn, A. 1908. Is mental training a myth? Educational Review, 37, 126-141. 
Meredith, G. P. 1927. Consciousness of method as a means of transfer 

of training. Forum of Education, 5, 37-45. 
Miller, 5S. A. 1976. Nonverbal assessment of conservation of number. 

Child Development, 47, 722-728. 
Milner, B. 1962. Les troubles de la memoire accompagnant des lesions 
hippocampique bilaterale. In Physiologie de l’hippocampe. Paris: Centre 
National de la Recherche Scientifique. 

Moore, O. K., and Anderson, S. B. 1954. Modern logic and tasks for 

experiments on problem solving behavior. Journal of Psychology, 38, 
151-160. 

Moran, T. 1983. Getting into a system: external-internal task-mapping 
analysis. In Proceedings of CHI ’83 Human Factors in Computing Systems 
Conference. New York: Association for Computing Machinery. 

 



286 References 

Murdock, B. B. 1957. Transfer designs and formulas. Psychological Bul- 
letin, 54, 313-326. 

Nakatani, L. H. 1983. Soft machines: a philosophy of user-computer 

interface design. In Proceedings of CHI ‘83 Human Factors in Comput- 
ing Systems Conference. New York: Association for Computing Ma- 
chinery. 

Neves, D. M. 1977. An experimental analysis of strategies of the tower 
of Hanoi puzzle. C.I.P. Working Paper 362, Department of Psychol- 
ogy, Carnegie-Mellon University. 

1981. Learning procedures from examples. Doctoral diss., 

Carnegie-Mellon University. 
Neves, D. M., and Anderson, J. R. 1981. Knowledge compilation: 
mechanisms for the automatization of cognitive skills. In J. R. Ander- 
son, ed., Cognitive skills and their acquisition, pp. 52-84. Hillsdale, N.J.: 
Erlbaum Associates. 

Newell, A. 1969. Heuristic programming: ill-structured problems. In 
J. Aronofsky, ed., Progress in operations research, New York: Wiley. 

1973. Production systems: models of control structures. In W. G. 
Chase, ed., Visual information processing, pp. 463-526. New York: 
Academic Press. 

Newell, K. 1981. Skill learning. In D. Holding, ed., Human skills, New 

York: Wiley. 
Newell, A., and Card, S. K. 1985. The prospects for psychological 

science in human-computer interaction. Human-Computer Interaction, 

1, 209-242. 
Newell, A., and Simon, H. 1972. Human problem solving. Englewood 

Cliffs, N.J.: Prentice-Hall. 

Niedermeyer, F. C. 1968. The relevance of frame sequence in pro- 
grammed instruction: an addition to the dialogue. Teaching Machines 

and Programmed Instruction, 16, 301-317. 
Nisbett, R. E., and Wilson, T. D. 1977. Telling more than we know: 

verbal reports on mental processes. Psychological Review, 84, 231-259. 
Norman, D. A. 1973. Memory, knowledge, and the answering of ques- 

tions. In R. L. Solso, ed., Contemporary issues in psychology. Washing- 
ton, D.C.: Winston. 

Orata, P. T. 1928. The theory of identical elements. Columbus: Ohio State 

University Press. 
Osgood, C. E. 1949. The similarity paradox in human learning: a res- 

olution. Psychological Review, 56, 132-143. 
Paige, J., and Simon, H.A. 1966. Cognitive processes in solving algebra 

word problems. In B. Kleinmuntz, ed., Problem solving. New York: 
Wiley. 

Papert, S. 1980. Mindstorms: children, computers, and powerful ideas. New 

York: Basic Books. 
Payne, D. A., Krathwohl, D. R., and Gordon, J. 1967. The effect of 

sequence on programmed instruction. American Educational Research 
Journal, 4, 125-132. 

Pea, R. D. 1983. LOGO programming and problem solving. In Proceed- 

  

 



References 287 

ings of the American Educational Research Association Conference, Mont- 

real. 
Perfetto, G. A., Bransford, J. D., and Franks, J. J. 1983. Constraints on 

access in a problem solving context. Memory and Cognition, 11, 24-31. 
Pillsbury, W. B. 1908. The effects of training on memory. Educational 

Review, 36, 15-27. 

Pirolli, P. L., and Anderson, J. R. 1985. The role of learning from 

examples in the acquisition of recursive programming skill. Canadian 
Journal of Psychology, 39, 240-272. 

Polson, P. G., and Kieras, D. E. 1985. A quantitative model of learn- 

ing and performance of text editing knowledge. In L. Bormann and 
B. Curtis, eds., Proceedings of CHI '85 Human Factors in Computing 

Systems Conference. New York: Association for Computing Ma- 

chinery. 
Polson, P., Bovair, S., and Kieras, D. 1987. Transfer between text 

editors. In J. M. Carroll and P. Tanner, eds., Proceedings of CHI ’87 
Human Factors in Computing Systems and Graphics Interface Conference. 
New York: Association for Computing Machinery. 

Polson, P., Muncher, E., and Kieras, D. In preparation. Transfer of 

skills between inconsistent editors. 
Polya, G. 1957. How to solve it. Garden City, N.Y.: Doubleday/Anchor. 
Porter, L. W., and Duncan, C. P. 1953. Negative transfer in verbal 

learning. Journal of Experimental Psychology, 46, 61-64. 
Posner, M. I. 1973. Cognition: an introduction. Glenview, Ill.: Scott, 

Foresman. 
Post, T. R., and Brennan, M. L. 1976. An experimental study of the 

effectiveness of a formal vs. an informal presentation of a general 
heuristic process on problem solving in tenth grade geometry. Journal 
for Research in Mathematics Education, 7, 59-64. 

Postman, L. 1971. Transfer, interference, and forgetting. In L. W. Kling 
and L. A. Riggs, eds., Experimental psychology, pp. 1019-32. New 

York: Holt, Rinehart, and Winston. 
Pyatte, J. A. 1969. Some effects of unit structure on achievement and 

transfer. American Educational Research Journal, 6, 241-261. 
Rapp, A. 1945. The experimental background of the problems of learn- 

ing. Classical Journal, 40, 467-480. 

Reder, L. M., and Ross, B. H. 1983. Integrated knowledge in different 

tasks: positive and negative fan effects. Journal of Experimental Psy- 
chology: Human Learning, Memory, and Cognition, 9, 55-72. 

Reed, S. K., Ernst, G. W., and Banerji, R. 1974. The role of analogy in 

transfer between similar problem states. Cognitive Psychology, 6, 
436-450. 

Reigeluth, C. M., and Stein, F. S. 1983. The elaboration theory of 
instruction. In C. M. Reigeluth, ed., Instructional design theories and 

models. Hillsdale, N.J.: Erlbaum Associates. 
Rescorla, L. 1980. Overextension in early language development. Jour- 

nal of Child Language, 7, 321-335. 
Resnick, L. B. 1976. Task analysis in instructional design: some cases



288 References 

from mathematics. In D. Klahr, ed., Cognition and instruction. Hills- 

dale, N.J.: Erlbaum Associates. 

Roberts, T. L. 1979. Evaluation of computer text editors. Technical Report 
SSL-79-9, Xerox Palo Alto (Calif.) Research Center. 

Robertson, S. P. 1984. Goal, plan, and outcome tracking in computer 
text-editing performance. Doctoral diss., Yale University. 

Roe, K. V., Case, H. W., and Roe, A. 1962. Scrambled vs. ordered 
sequence in autoinstructional programs. Journal of Educational Psychol- 
ogy, 53, 101-104. 

Rogoff, B., and Lave, J., eds. 1984. Everyday cognition: its development in 
social context. Cambridge, Mass.: Harvard University Press. 

Rosenbloom, P. S., and Newell, A. 1986. The chunking of goal hierar- 
chies: a generalized model of practice. In R. S. Michalski, J. G. Car- 
bonell, and T. M. Mitchell, eds., Machine learning, vol. 2, pp. 247-288. 
Los Altos, Calif.: Morgan Kaufmann. 

Ross, B. H. 1982. Remindings and their effects in learning a cognitive skill. 
Technical Report CIS-19, Xerox Palo Alto (Calif.) Research Center. 

Ross, L. 1977. The intuitive psychologist and his shortcomings. In 
L. Berkowitz, ed., Advances in experimental social psychology. New York: 
Academic Press. 

Rubens, A. B. 1979. Agnosia. In K. Heilman and E. Valenstein, eds., 

Clinical neuropsychology. Oxford: Oxford University Press. 
Rubinstein, M. F. 1975. Patterns of problem solving. Englewood Cliffs, 

N.J.: Prentice-Hall. 
1980. An interdisciplinary problem-solving course. In D. T. 

Tuma and F. Reif, eds., Problem solving and education. Hillsdale, N.J.: 

Erlbaum Associates. 
Ruger, H. A. 1910. The psychology of efficiency. Archives of Psychology, 

15. 

Sauers, R., and Farrell, R. 1982. GRAPES User’s Manual. Technical 

Report, Department of Psychology, Carnegie-Mellon University. 
Schacter, D. L. 1987. Implicit memory: history and current status. Jour- 

nal of Experimental Psychology: Learning, Memory, and Cognition, 13, 
501-518. 

Schank, R. C., and Abelson, R. P. 1977. Scripts, plans, goals, and under- 
standing. Hillsdale, N.J.: Erlbaum Associates. 

Schoenfeld, A. H. 1979. Measures of problem-solving performance and 
of problem-solving instruction. Journal for Research in Mathematics Ed- 
ucation, 10, 173-187. 

1980. Teaching problem solving skills. American Mathematical 
Monthly, 87, 794-805. 

1983. Beyond the purely cognitive: belief systems, social cogni- 

tions, and metacognitions as driving forces in intellectual perfor- 
mance. Cognitive Science, 7, 329-363. 

1985. Mathematical problem solving. New York: Academic Press. 
Schustack, M. 1979. Task-dependency in children’s use of linguistic 

rules. Paper presented at the annual meeting of the Psychonomics 
Society, Phoenix. 

  

  

  

 



References 289 

Scribner, S. 1984. Studying working intelligence. In B. Rogoff and 

J. Lave, eds., Everyday cognition: its development in social context. Cam- 
bridge, Mass.: Harvard University Press. 

Shiffrin, R. M., and Schneider, W. 1977. Controlled and automatic 
human information processing. II. Perceptual learning, automatic 
attending, and a general theory. Psychological Review, 84, 127-190. 

Shortliffe, E. H. 1976. Computer-based medical consultations: MYCIN. New 
York: American Elsevier. 

Shrager, J., and Pirolli, P. 1983. SIMPLE: a simple language for research in 

programmer psychology. Computer program, Department of Psychol- 
ogy, Carnegie-Mellon University. 

Siegler, R. S. 1986. Children’s thinking. Englewood Cliffs, N.J.: Prentice- 
Hall. 

Silver, E. A. 1979. Student perceptions of relatedness among mathe- 
matical verbal problems. Journal for Research in Mathematics Education, 
10, 195-210. 

simon, H. A. 1947. Administrative behavior. New York: Macmillan. 
1969. The sciences of the artificial. Cambridge, Massachusetts: MIT 

Press. 
1975. The functional equivalence of problem solving skills. Cog- 

nitive Psychology, 7, 268-288. 

1980. Problem solving and education. In D. T. Tuma and F. Reif, 

eds., Problem solving and education: issues in teaching and research. Hills- 
dale, N.J.: Erlbaum Associates. 

Simon, H. A., and Hayes, J. R., 1976. The understanding process: 
problem isomorphs. Cognitive Psychology, 8, 165-190. 

Simon, H. A., and Reed, S. K. 1976. Modelling strategy shifts in a 
problem solving task. Cognitive Psychology, 8, 86-97. 

Singley, M. K., and Anderson, J. R. 1985. The transfer of text-editing 
skill. Journal of Man-Machine Studies, 22, 403-423. 

1988. A keystroke analysis of learning and transfer in text edit- 
ing. Human-Computer Interaction, 3, 223-274. 

Skinner, B. F. 1954. The science of learning and the art of teaching. 
Harvard Educational Review, 24, 86-97. 

1957. Verbal behavior. New York: Appleton-Century-Crofts. 

smith, J. P. 1973. The effect of general versus specific heuristics in 
mathematical problem-solving tasks. Doctoral diss., Columbia Uni- 
versity. 

Smith, S. 1986. An analysis of transfer between tower of Hanoi iso- 
morphs. Doctoral diss., Carnegie-Mellon University. 

Soloway, E., Ehrlich, K., and Gold, E. 1983. Reading a program is like 

reading a story (well, almost). In Proceedings of the Fifth Annual Con- 
ference of the Cognitive Science Society, Rochester, N.Y. 

Sternberg, R., and Bower, G. H. 1974. Transfer in part-whole and 
whole-part free recall: a comparative evaluation of theories. Journal of 
Verbal Learning and Verbal Behavior, 13, 1-26. 

Stratton, G. M. 1922. Developing mental power. New York: Houghton 
Mifflin. 

  

  

  

  

 



290 References 

Strom, I. M. 1960. Research in grammar and usage and its implication 
for teaching and writing. Bulletin of School of Education, Indiana Uni- 
versity, 36 (5). 

Stroop, J. R., 1935. Studies of interference in serial verbal reactions. 
Journal of Experimental Psychology, 18, 643-662. 

Thibadeau, R., Just, M. A., and Carpenter, P. A. 1982. A model of the 
time course and content of reading. Cognitive Science, 6, 157-203. 

Thomas, J. C. 1974. An analysis of behavior in the hobbits-orcs prob- 
lem. Cognitive Psychology, 6, 257-269. 

Thompson, R. 1986. PUPS user manual. Technical Report, Department 
of Psychology, Carnegie-Mellon University. 

Thomson, J. R., and Chapman, R. S. 1977. Who is ‘Daddy’ revisited: 

the status of two-year-olds’ overextended words in use and compre- 
hension. Journal of Child Language, 4, 359-375. 

Thorndike, E. L. 1903. Educational psychology. New York: Lemke & 
Buechner. 

1906. Principles of teaching. New York: A. G. Seiler. 
1922. The effect of changed data upon reasoning. Journal of 

Experimental Psychology, 5, 33-38. 
1924. Mental discipline in high school studies. Journal of Educa- 

tional Psychology, 15, 1-22. 
Thorndike, E. L., and Woodworth, R. S. 1901. The influence of im- 

provement in one mental function upon the efficiency of other func- 

tions. Psychological Review, 8, 247-261. 
Thorndike, E. L., Aikens, H. A., and Hubbell, E. 1902. Correlations 

among perceptive and associative processes. Psychological Review, 9, 

374-382. 
Thune, L. E. 1950. The effect of different types of preliminary activities 

on subsequent learning of paired-associate material. Journal of Exper- 
imental Psychology, 40, 423-438. 

Tulving, E. 1966. Subjective organization and effects of repetition in 
multi-trial free-recall learning. Journal of Verbal Learning and Verbal 

Behavior, 5, 193-197. 
Tulving, E., and Osler, S. 1967. Transfer effects in whole/part free-recall 

learning. Canadian Journal of Psychology, 21, 253-262. 
Tversky, A., and Kahnemann, D. 1974. Judgments under uncertainty: 

heuristics and biases. Science, 185, 1124-31. 
Underwood, B. J. 1957. Psychological research. New York: Appleton- 

Century-Crofts. 
VanLehn, K. 1983. Felicity conditions for human skill acquisition: val- 

idating an Al-based theory. Doctoral diss., Massachusetts Institute of 
Technology. 

VanPatten, J., Chao, C., and Reigeluth, C. M. 1986. A review of strat- 

egies for sequencing and synthesizing instruction. Review of Educa- 

tional Research, 56, 437-471. 
Voss, J. F., Vesonder, G. T., and Spilich, G. J. 1980. Generation and 

recall by high-knowledge and low-knowledge individuals. Journal of 
Verbal Learning and Verbal Behavior, 19, 651-667. 

  

  

 



References 291 

Wallin, J. F. W. 1910. The doctrine of formal discipline. Journal of 
Educational Psychology, 1, 168-171. 

Ward, L. B. 1937. Reminiscence and rote learning. Psychological Mono- 
graphs, 49 (220). 

Wason, P. C. 1966. Reasoning. In B. M. Foss, ed., New horizons in 

psychology. Harmondsworth: Penguin. 
Wason, P. C., and Johnson-Laird, P. N. 1972. Psychology of reasoning: 

structure and content. Cambridge, Mass.: Harvard University Press. 
Waterman, D. A., and Hayes-Roth, F., eds. 1978. Pattern-directed infer- 

ence systems. New York: Academic Press. 
Weisberg, R., DiCamillo, M., and Phillips, D. 1978. Transferring old 

associations to new situations: a non-automatic process. Journal of 
Verbal Learning and Verbal Behavior, 17, 219-228. 

Wertheimer, M. 1945. Productive thinking. New York: Harper & Row. 
Wesman, A. G. 1945. A study of transfer of training from high school 

subjects to intelligence. Journal of Educational Research, 39, 254-264. 
Winer, G. A. 1980. Class-inclusion reasoning in children: a review of 

the empirical literature. Child Development, 51, 309-328. 
Winston, P. H. 1977. Artificial intelligence. Reading, Mass.: Addison- 

Wesley. 
1979. Learning and reasoning by analogy. Communications of the 

Association for Computing Machinery, 23, 689-703. 
Winston, P. H., and Horn, B. K. P. 1981. LISP. Reading, Mass.: 

Addison-Wesley. 
Woodrow, H. 1927. The effect of the type of training upon transference. 

Journal of Educational Psychology, 18, 159-172. 
Woodworth, R. S., and Schlosberg, H. 1954. Experimental psychology. 
New York: Holt, Rinehart, and Winston. 

Young, R. M. 1983. Surrogates and mappings: two kinds of conceptual 
models for interactive devices. In D. Gentner and A. L. Stevens, eds., 

Mental models. Hillsdale, N.J.: Erlbaum Associates. 

 





Author Index 

Abelson, R. P., 34 

Abruzzi, A., 256 

Aikens, H. A., 25 

Allport, G. W., 9 
Anderson, J. R., 2, 22, 30-32, 34, 

36, 42, 4446, 49, 50, 52, 59, 

64-66, 68, 70, 78, 86, 115, 119, 

134-137, 160, 163-164, 185, 

190, 213-220, 222, 229, 243, 

257, 259, 261, 268, 274 

Anderson, S. B., 213 

Angell, J. R., 2 
Anzai, Y., 134 

Atwood, M. E., 28 

Ausubel, D. P., 20 

Baker, B. L., 19 

Baker, K. E., 14 

Banerji, R., 20, 22, 23, 39 

Bassler, O. C., 18 

Beilin, H., 7 

Bever, T. G., 49 

Billman, D., 221 

Bilodeau, E. A., 117, 118 

Bilodeau, I. McD., 117, 118 

Black, J. B., 22, 34 

Bobrow, D. G., 152 

Boring, E. G., 3 

Bourne, L. E., 239 

Bovair, S., 32, 149, 224-226, 256 

Bower, G. H., 14, 34, 118, 243 

Bowers, C., 70 

Boyes, L., 243 

Boyle, C. F., 52 

Brain, L., 140 

Bransford, J. D., 21, 22, 25 
Brennan, M. L., 25 

Brown, A. L., 25, 35, 221 

Brown, E. L., 118 

Brown, J. S., 48, 270 

Brownston, L., 30 

Bruner, J. S., 20 

Buckland, P. R., 15, 19 

Bunch, M. E., 15, 198-200 

Burton, R. B., 270 

Campione, J. C., 25 
Carbonell, J. G., 49, 167 

Card, S. K., 68-69, 77, 85, 89, 

100, 103, 227, 255, 263, 269, 

271 

Carpenter, P. A., 30 

Carpenter, T. P., 247 

Carraher, D. W., 246 

Carraher, T. N., 246 

Carroll, J. B., 25 
Carroll, J. M., 95 

Carver, S., 238-239 

Case, H. W., 15, 19 

Chao, C., 15, 19 

Chapman, R. S., 139 

Chase, W. G., 26, 34, 50, 268 

Cheng, P. W., 24, 29, 235-236 

Chi, M. T. H., 22, 256 

Chomsky, N., 32, 138 

Clark, E., 139



294 Author Index 

Clement, J., 244 

Cohen, J., 116 

Cohen, N., 200 

Conrad, F., 59, 64, 66 

Corbett, A. T., 52, 66 

Corkin, S., 200 

Cox, J. R., 235 

Coxe, W. W., 8 

Crowley, M. E., 37, 38, 41 

Curtis, M. E., 229 

Dalbey, J., 239 

Damasio, A., 140 

D’ Andrade, R., 235 
Day, J. D., 35 
de La Rocha, 244, 246 

DiCamillo, M., 21 

Donahue, V. M., 15, 19 

Dorsey, M. N., 8, 25 
Dunbar, K., 116 

Duncan, C. P., 14, 276 

Duncker, K., 21, 22 

Egan, D. E., 70, 71, 76 

Ehrlich, K., 160 

Ekstrom, R. B., 70 

Elio, R., 248-251, 275-276 

Ellis, H. C., 5, 12, 37, 41 

Ericsson, K. A., 50, 271-274 

Ernst, G. W., 20, 22, 23, 39, 

168 

Farrell, R., 30, 31, 42, 44, 103, 

164, 268 

Fawcett, H. P., 25 

Feltovich, P., 22, 256 

Ferrara, R. A., 25 

Fisher, C. W., 25 

Fitts, P. M., 40 

Flavell, J. H., 8 

Flexman, R. E., 118 

Flower, L. S., 229, 256 

Fodor, J. A., 49 

Fong, G. T., 237 

Forgy, C., 115 

Forster, H., 37, 38, 41 

Franks, J. J., 21, 22 

French, J. W., 70 

Gagne, R. M., 14, 15-20, 37, 38, 

41, 228, 256, 267 

Gardner, M., 21 

Garlick, S., 239 

Garrett, M. F., 49 

Gavurin, E. I., 15, 19 

Gelman, R., 139 

Geschwind, N., 140 

Gick, M. L., 21-22, 221, 276 

Glaser, R., 22, 256 

Gold, E., 160 

Goldberg, D. J., 231 

Goldin-Meadow, S., 139 

Gomez, L. M., 70, 71, 76 

Gordon, J., 19 

Gorman, H., 239 

Gosling, J., 70 

Griggs, R. A., 235 

Gruchacz, A., 71, 76 

Halasz, F., 34, 176 

Hammerton, M., 117, 118 

Harlow, H. F., 15, 16 

Harman, H. H., 70 

Hartung, M. L., 25 
Harvey, J., 231 

Hayes, J. R., 20, 22, 23, 26, 30, 

39, 154, 229, 256, 263-265 

Hayes-Roth, F., 30 
Hecht, B., 139 

Higginson, G., 2 

Hilgard, E. R., 12, 14, 118 

Holding, D., 118 
Holyoak, K. J., 21-22, 24, 29, 

221, 235-236, 276 

Hopkins, L. T., 8, 25 
Horn, B. K. P., 44 

Hubbell, E., 25 

Huttenlocher, J., 139 

Inhelder, B., 8 

Irvine, R. P., 12 

Jeffries, R., 25, 28 

Johnson-Laird, P. N., 234, 235, 

256 

Judd, C. H., 8-9, 11, 136



Author Index 295 

Junn, E., 221 

Just, M. A., 30 

Kahnemann, D., 234 

Kane, M. J., 221 

Kant, E., 30 

Karat, J., 243 

Karmiloff-Smith, A., 139 

Katona, G., 9, 11-12, 39, 97, 136, 

238, 258 

Katz, H., 7 

Kay, D. S., 22 

Kelley, H. H., 235 
Kernighan, B. W., 70 
Kessler, C., 134-137, 160-162, 

200, 229 

Kieras, D., 32, 149, 224-227, 

240-244, 256 

Kinsbourne, M., 7 

Klahr, D., 238-239, 268 

Kling, R. E., 49 

Kotovsky, K., 22, 229 
Krantz, D. H., 237 

Krathwohl, D. R., 19 

Kunda, Z., 237 

Kurland, D. M., 134 

Laird, J. E., 48 

Lang, E. S., 198 

Langley, P., 268 

Larkin, J., 151, 168, 169, 256, 268 

Lave, J., 29, 162, 244, 246 

Legrenzi, M., 235 
Legrenzi, P., 235 
Lesgold, A. M., 26, 229 
Levin, G. R., 19 

Lewis, C. H., 95 

Lewis, D., 118 

Lewis, M. W., 50, 52, 119, 

213-220 

Linn, M. C., 25, 239 

Lucas, J. F., 231 

Luchins, A. S., 116-117, 243 

Mack, R., 95 

Martin, E., 14 

Martin, N., 30 

Marx, M. H., 15 

Matheny, W. G., 118 

McClelland, J., 115, 116 

McCloskey, M., 244-246 

McCraven, V., 15, 198 

McDermott, D., 198 

McDermott, J., 168, 169, 256, 268 

McGilly, K., 239 

McKendree, J. E., 160 

Meiklejohn, A., 5-6 

Meredith, G. P., 8 

Miller, S. A., 7 

Milner, B., 200 

Moore, O. K., 213 

Moran, T., 32, 34, 68-69, 77, 85, 

89, 100, 103, 176, 227, 255, 263, 

271 

Moser, J. M., 247 

Muncher, E., 240-244 

Murdock, B. B., 40 

Murtaugh, M., 244, 246 

Nakatani, L. H., 2 

Neches, R., 22, 268 

Neves, D. M., 31, 78, 164, 266 

Newell, A., 1, 26, 30, 40, 48, 49, 

68-69, 77, 85, 89, 100, 103, 168, 

169, 190, 213, 227, 229, 230, 

255, 256, 262, 263, 269, 271 

Newell, K., 117 

Niedermeyer, F. C., 19 
Nisbett, R. E., 24, 29, 235-236, 

237 

Norman, D. A., 20 

Oliver, L. M., 24, 29, 235-236 

Orata, P. T., 5, 8 

Osgood, C. E., 13-14, 117 

Osler, S., 243 

Paige, J., 152 

Papert, S., 25 
Paradise, N. E., 16-19, 256, 267 

Payne, D. A., 19 

Pea, R. D., 135, 239 

Perfetto, G. A., 21, 22 

Phillips, D., 21 
Piaget, J., 6-8 

Pillsbury, W. B., 2



296 Author Index 

Pirolli, P. L., 31, 135, 164 

Polson, P. G., 28, 32, 224-227, 

240-244, 256 

Polya, G., 231 

Porter, L. W., 14 

Posner, M. I., 40, 198 

Post, T. R., 25 

Postman, L., 14, 117, 120 

Poulin-DuBois, D., 239 

Pyatte, J. A., 19 

Rapp, A., 25 

Razran, L., 28 

Reder, L. M., 34 

Reed, S. K., 20, 22, 23, 39 

Rees, E., 22 

Reigeluth, C. M., 15, 19, 20 

Reiser, B. J., 45, 52 

Rescorla, L., 139 
Resnick, L. B., 18, 19, 229 

Roberts, T. L., 71, 76 

Robertson, S. P., 88 

Roe, A., 15, 19 

Roe, K. V., 15, 19 

Rogoff, B., 29, 162 

Romberg, T., 231 
Rosenbloom, P. S., 30, 40, 48, 

262 

Ross, B. H., 22, 34, 268 

Ross, L., 237 

Rubens, A. B., 140 

Rubinstein, M. F., 25, 26-27 

Ruger, H. A., 8 

Rumelhart, D., 115 

Sauers, R., 31, 42, 44, 103, 164, 

268 

Schacter, D. L., 200 

Schafer, C., 243 

Schank, R. C., 34 

Schliemann, A. D., 246 

Schlosberg, H., 41 

Schneider, W., 229 

Schoenfeld, A. H., 136, 231-234 

Schultz, T. R., 239 

Schustack, M., 139-140 

Scribner, S., 244, 246 

Seligman, M., 139 

Sharma, D., 71, 76 

Shiffrin, R. M., 229 

Shortliffe, E. H., 256 

Shrager, J., 135 
Siegler, R. S., 7 

Silver, E. A., 22 

Simon, D. P., 168, 169, 268 

Simon, H. A., 1, 12, 21, 22, 23, 

25, 26, 30, 34, 39, 103, 151, 

152, 154, 168, 169, 213, 229, 

230, 256, 257, 262, 263-265, 

268, 270, 271-274 

singley, M. K., 32, 68, 86 
Skinner, B. F., 15, 256 

Smith, J. P., 231 

Smith, S., 23, 39 

Soloway, E., 160 
Spilich, G. J., 34 

Stein, F. S., 20 

Sternberg, R., 243 

Stratton, G. M., 3 

Strom, I. M., 25 

Stroop, J. R., 116 

Thibadeau, R., 30 

Thomas, J. C., 23, 39 
Thompson, R., 22, 185, 190 

Thomson, J. R., 139 

Thorndike, E. L., 2-6, 12, 24, 25, 

51, 103, 112, 119, 138, 159, 222, 

229-230, 248, 256 

Thune, L. E., 15 

Tulving, E., 243 

Turner, T. J., 34 

Tversky, A., 234 

UVesato, Y., 134 

Underwood, B. J., 12 

VanLehn, K., 22, 30, 31, 48, 164, 

268, 270 

VanPatten, J., 15, 19 

Vesonder, G. T., 34 

Voss, J. F., 34 

Wallin, J. F. W., 5 

Ward, L. B., 15 

Wason, P. C., 23-24, 234-235



Author Index 297 

Waterman, D. A., 30 

Weisberg, R., 21 
Weisgerber, S., 243 

Wertheimer, M., 9, 10-11, 12, 

136 

Wesman, A. G., 25 

Wheeler, E., 71, 76 

Whipple, J. E., 12 

Wilson, T. D., 272 

Winer, G. A., 7 

Winston, P. H., 25, 44, 49 

Woodrow, H., 2, 8 

Woodworth, R. S., 2-3, 5, 25, 41 

Young, R. M., 256



Subject Index 

Acquisition interference, 115 
ACT* theory, 30-32, 42-43, 

48-51, 164 
Alexia, 140 
Analogy: analogical transfer, 

20-23, 31, 34, 165-167; simula- 
tion model, 173-176, 184-186; 
analogical errors, 176; produc- 
tion compilation via analogy, 
189-193, 195-196. See also 
Learning by example 

Automatization, 228-229. See also 
Knowledge compilation 

Calculus: task analysis, 141-143; 
related-rates tutor, 143-147; 

learning, 150-159; vertical 
transfer, 150-159; simulation 

model, 164-186, 194-196; simu- 

lation trace, 186-189; declara- 

tive transfer, 205-213 

Composition, 261-262 
Credit-blame assignment, 228 
Curriculum design, 15-20, 

227-229, 238 

Debugging, 160-162, 228, 
238-239 

Declarative-procedural distinc- 
tion, 32-34, 164-165, 197-200 

Declarative transfer: in the LISP 

tutor, 52; in calculus, 163, 167, 

192, 197, 198-199, 201, 

205-213; in logic, 213-214, 
218-220; general properties, 
220-221 

Deductive reasoning, 23-24, 
234-238 

Discrimination, 259-260 

Einstellung, 98-99, 102, 116-117 

Encoding, 237-238. See also Rep- 
resentation 

Faculty psychology, 3 
Formal discipline, 2-3, 229- 

230 
Function groups, 4-5 

General transfer, 24-30, 34-35, 

229-239 

Generalization, 195-196, 225 

Gestalt psychology, 9-12 
GOMS model of text editing, 

68-69, 229 

Heuristics, 26-27, 231-234 

Horizontal decalage, 7 

Identical elements: in 
Thorndike’s theory, 3-6, 24; 

productions as, 31-32, 35-36, 
51, 65-67, 103-104, 112-113, 
118-119, 137, 159, 162, 
222-224, 238, 248; mathemati- 

cal analysis, 251-255



Subject Index 

Keystroke parsing, 58, 88 
Knowledge compilation, 31, 

46-48, 164, 189-193, 227, 228, 

259-261, 268-269 

Lateral transfer, 68, 78-83, 
96-102, 124-125 

Learning by example, 228-229. 
See also Analogy 

Learning to learn, 15 
LISP programming: learning, 

43-46, 60-61; vertical transfer, 

61-64; inter-production correla- 
tions, 65-66; negative transfer, 

134-136; use specificity, 

160-162 
LISP tutor, 51-59 
LOGO programming, 238-239 

Meaningful learning, 8-12, 
257-258 

Means-ends analysis, 168-173, 

179-184 

Negative transfer: in text editing, 
102, 120-121, 125-126, 128-134, 
240-244; taxonomy of types, 
114-115; in problem solving, 
116-117; in verbal learning, 14, 

118; in programming, 134-136 

Paired associates, 13-15, 243 

Part-whole learning, 243 
Pattern matching, 115-116 

Perverse EMACS, 120-121 
Planning: in text editing, 85-86, 

88-89, 93, 96-97, 100-102, 
128-130; in calculus, 152-157, 

168-173; transfer of planning 
components, 96-97, 100-102, 

129-130, 152-157, 212-213; 
teaching planning skills, 
238-239 

Pragmatic reasoning schemas, 
235-236 

Problem isomorphs, 263-266 

Proceduralization, 31, 259-260. 
See also Knowledge compilation 

299 

Programmed instruction, 15- 

16 

Protocol analysis, 264, 266, 

271-274 

PUPS production system lan- 
guage, 164, 173-175, 190 

Rationality: principle of limited, 
262, 270, 275 

Related rates tutor, 143-147 
Repair theory, 242-244 

Representation: implications for 
transfer, 9-12, 257-259, 
260-262; as a guide to curricu- 
lum design, 238; problems 

with model building, 248-251; 

methods for determining rep- 
resentations, 269-274 

Rote learning, 8-12, 257-258 

Situated reasoning, 235, 244, 

246-247. See also Use specificity 
Skill hierarchies, 16—20 

Stage theories, 8 
Statistical reasoning, 237-238 
Stimulus compounding, 118 
Strategies: learning, 154-155, 

207, 238; transfer, 98, 136, 

155-156, 239 
Stroop effect, 116 

Task analysis, 238, 255-257, 

270-271 

Text editing: learning, 75-78, 
88-95; lateral transfer, 78-83, 

96-102, 123-125, 225-227; neg- 

ative transfer, 102, 125-126, 

128-132, 240-244: simulation 

models of transfer, 103-112, 

132-134; intrusion analysis, 

125-126 

Transfer: definition, 1; designs, 

37-41; formulas, 37-41, 

109-112, 210; derivation of for- 

mulas, 251-255 

Translation, 151-152 

Transposition, 9



300 Subject Index 

UNDERSTAND model of com- 
prehension, 263-264 

Use specificity: in natural lan- 
guage, 138-140; in calculus, 
140, 149-159; in programming, 
160-162; in physics, 244-246; 
in arithmetic, 246-247. See also 

Situated reasoning 

Verbal learning, 13-15, 118, 243 

Vertical transfer, 15-20, 42, 

227-229 

Weak methods, 26, 28, 167-168, 

229-230



DATE DUE 

 




